Sec 2: 2nd Isomorphism Thm (Diamond Isomorphism Thm)

- · Statement: Let H < G , N J G. Then
 - (i) HN = { hn | he H, neN} is a subgroup of G
 - (ii) HAN is a normal subgroup of H

(iii) The quotient group HN is isomorphic to the quotient group H/(HnN)

 Strategy of proof: Define a (surjective) map
 φ: domain Hⁿ→ H^N/N by
 φ: h → hN
 and apply 1st lsomorphism Thm

1 Prove that (i) HN is a subgroup of G:
We need to show that
$$e \in HN$$

For all $h_1n_1, h_2n_2 \in HN$, we have $h_1n_1h_2n_2 \in HN$.
For all $h_1 \cap e \in HN$, $(h \cap n)^{-1} \in HN$.

· Since H and N are subgroups of G, they both contain the identity elt, so e E HN

• Suppose
$$h_1 n_1$$
, $h_2 n_2 \in HN$. Then
 $(h_1 n_1)(h_2 n_2) = h_1 \underbrace{h_2 h_2^{-1}}_{new} n_1 h_2 n_2$
 $= h_1 h_2 \underbrace{(h_2^{-1} n_1 h_2)}_{new} n_2$
 $\in HN$ because $h_2^{-1} n_1 h_2 \in N$ (since N \triangleleft G).

• Suppose hn \in HN. Then the inverse of hn is n'h'. To show that n'h' \in HN, note that

$$n^{-1}h^{-1} = \frac{h^{-1}h}{new}n^{-1}h^{-1}$$
$$= h^{-1}(h n^{-1}h^{-1})$$
$$\in HN \qquad because h n^{-1}h^{-1} \in N \text{ (since N d G). [1]}$$

2 Prove that (ii) the intersection H∩N (H: We need to show that h'n h ∈ H∩N for all h ∈ H, n ∈ H∩N. Let h ∈ H and n ∈ H∩N. Then h'n h ∈ H since h', n, h ∈ H and H is a group. Also, h'n h ∈ N since N is normal in G. Hence h'n h ∈ H∩N [2]

3 Prove that $\phi: H \longrightarrow HN/N$ is a homomorphism: $\phi(h) = hN$ We need to show that $\phi(ab) = \phi(a)\phi(b)$. Recall from def of quotient groups that $aN \cdot bN = abN$. $\phi(ab) = abN$ $= aN \cdot bN$ by def of binary operation of a quotient group $= \phi(a)\phi(b)$ [3]

4 Prove that $\phi: H \to HN/N$, $\phi(h) = hN$ is surjective: We need to show that, for any $\times N \in \frac{HN}{N}$, there is $h \in H$ with $\phi(h) = \times N$. Note that any coset in the codomain $\frac{HN}{N}$ can be written as hnN where $h \in H$, $n \in N$ but hnN = hN, so $\phi(h) = hN = hnN$. [4]

5 Prove that $\ker(\phi) = H \cap N$: We need to show that $\phi(n) = N$ (since N is the identity in the for all $n \in H \cap N$ and $\phi(x) \neq N$ if $x \notin H \cap N$. $\phi(n) = n N = N$ for all $n \in H \cap N$ Suppose $x \in H$ $\dim_{domain of } \phi$ Then $\phi(x) = x N \neq N$ (since we know that two distinct left cosets) $\operatorname{Are} \operatorname{disjoint}$ 6 By the 1st Isomorphism Thm, $H'_{ker}(\phi) \cong Im(\phi)$ Since $ker(\phi) = H \cap N$ and $Im(\phi) = HN/N$, we have $H'_{H \cap N} \cong HN/N$ III