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Homomorphisms

One of the basic ideas of algebra is the concept of a homomorphism, a
natural generalization of an isomorphism. If we relax the requirement
that an isomorphism of groups be bijective, we have a homomorphism.

11.1 Group Homomorphisms
A homomorphism between groups (G, ·) and (H, ◦) is a map ϕ : G→ H
such that

ϕ(g1 · g2) = ϕ(g1) ◦ ϕ(g2)
for g1, g2 ∈ G. The range of ϕ in H is called the homomorphic image
of ϕ.

Two groups are related in the strongest possible way if they are iso-
morphic; however, a weaker relationship may exist between two groups.
For example, the symmetric group Sn and the group Z2 are related by the
fact that Sn can be divided into even and odd permutations that exhibit
a group structure like that Z2, as shown in the following multiplication
table.

even odd
even even odd
odd odd even

We use homomorphisms to study relationships such as the one we
have just described.
Example 11.1 Let G be a group and g ∈ G. Define a map ϕ : Z → G
by ϕ(n) = gn. Then ϕ is a group homomorphism, since

ϕ(m+ n) = gm+n = gmgn = ϕ(m)ϕ(n).

This homomorphism maps Z onto the cyclic subgroup of G generated by
g. □
Example 11.2 Let G = GL2(R). If

A =

(
a b

c d

)
is in G, then the determinant is nonzero; that is, det(A) = ad − bc ̸= 0.
Also, for any two elements A and B in G, det(AB) = det(A)det(B).
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Using the determinant, we can define a homomorphism ϕ : GL2(R) → R∗

by A 7→ det(A). □
Example 11.3 Recall that the circle group T consists of all complex
numbers z such that |z| = 1. We can define a homomorphism ϕ from the
additive group of real numbers R to T by ϕ : θ 7→ cos θ + i sin θ. Indeed,

ϕ(α+ β) = cos(α+ β) + i sin(α+ β)

= (cosα cosβ − sinα sinβ) + i(sinα cosβ + cosα sinβ)
= (cosα+ i sinα)(cosβ + i sinβ)
= ϕ(α)ϕ(β).

Geometrically, we are simply wrapping the real line around the circle in
a group-theoretic fashion. □

The following proposition lists some basic properties of group homo-
morphisms.
Proposition 11.4 Let ϕ : G1 → G2 be a homomorphism of groups. Then

1. If e is the identity of G1, then ϕ(e) is the identity of G2;

2. For any element g ∈ G1, ϕ(g−1) = [ϕ(g)]−1;

3. If H1 is a subgroup of G1, then ϕ(H1) is a subgroup of G2;

4. If H2 is a subgroup of G2, then ϕ−1(H2) = {g ∈ G1 : ϕ(g) ∈ H2}
is a subgroup of G1. Furthermore, if H2 is normal in G2, then
ϕ−1(H2) is normal in G1.

Proof. (1) Suppose that e and e′ are the identities of G1 and G2, respec-
tively; then

e′ϕ(e) = ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e).

By cancellation, ϕ(e) = e′.
(2) This statement follows from the fact that

ϕ(g−1)ϕ(g) = ϕ(g−1g) = ϕ(e) = e′.

(3) The set ϕ(H1) is nonempty since the identity of G2 is in ϕ(H1).
Suppose that H1 is a subgroup of G1 and let x and y be in ϕ(H1). There
exist elements a, b ∈ H1 such that ϕ(a) = x and ϕ(b) = y. Since

xy−1 = ϕ(a)[ϕ(b)]−1 = ϕ(ab−1) ∈ ϕ(H1),

ϕ(H1) is a subgroup of G2 by Proposition 3.31, p. 40.
(4) Let H2 be a subgroup of G2 and define H1 to be ϕ−1(H2); that

is, H1 is the set of all g ∈ G1 such that ϕ(g) ∈ H2. The identity is in
H1 since ϕ(e) = e′. If a and b are in H1, then ϕ(ab−1) = ϕ(a)[ϕ(b)]−1 is
in H2 since H2 is a subgroup of G2. Therefore, ab−1 ∈ H1 and H1 is a
subgroup of G1. If H2 is normal in G2, we must show that g−1hg ∈ H1

for h ∈ H1 and g ∈ G1. But

ϕ(g−1hg) = [ϕ(g)]−1ϕ(h)ϕ(g) ∈ H2,

since H2 is a normal subgroup of G2. Therefore, g−1hg ∈ H1. ■
Let ϕ : G → H be a group homomorphism and suppose that e is the

identity of H. By Proposition 11.4, p. 140, ϕ−1({e}) is a subgroup of G.
This subgroup is called the kernel of ϕ and will be denoted by kerϕ. In
fact, this subgroup is a normal subgroup of G since the trivial subgroup
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is normal in H. We state this result in the following theorem, which says
that with every homomorphism of groups we can naturally associate a
normal subgroup.

Theorem 11.5 Let ϕ : G → H be a group homomorphism. Then the
kernel of ϕ is a normal subgroup of G.

Example 11.6 Let us examine the homomorphism ϕ : GL2(R) → R∗

defined by A 7→ det(A). Since 1 is the identity of R∗, the kernel of this
homomorphism is all 2 × 2 matrices having determinant one. That is,
kerϕ = SL2(R). □

Example 11.7 The kernel of the group homomorphism ϕ : R → C∗

defined by ϕ(θ) = cos θ + i sin θ is {2πn : n ∈ Z}. Notice that kerϕ ∼= Z.
□

Example 11.8 Suppose that we wish to determine all possible homo-
morphisms ϕ from Z7 to Z12. Since the kernel of ϕ must be a subgroup of
Z7, there are only two possible kernels, {0} and all of Z7. The image of
a subgroup of Z7 must be a subgroup of Z12. Hence, there is no injective
homomorphism; otherwise, Z12 would have a subgroup of order 7, which
is impossible. Consequently, the only possible homomorphism from Z7

to Z12 is the one mapping all elements to zero. □
Example 11.9 Let G be a group. Suppose that g ∈ G and ϕ is the
homomorphism from Z to G given by ϕ(n) = gn. If the order of g is
infinite, then the kernel of this homomorphism is {0} since ϕ maps Z
onto the cyclic subgroup of G generated by g. However, if the order of g
is finite, say n, then the kernel of ϕ is nZ. □

11.2 The Isomorphism Theorems
Although it is not evident at first, factor groups correspond exactly to
homomorphic images, and we can use factor groups to study homo-
morphisms. We already know that with every group homomorphism
ϕ : G→ H we can associate a normal subgroup of G, kerϕ. The converse
is also true; that is, every normal subgroup of a group G gives rise to
homomorphism of groups.

Let H be a normal subgroup of G. Define the natural or canonical
homomorphism

ϕ : G→ G/H

by
ϕ(g) = gH.

This is indeed a homomorphism, since

ϕ(g1g2) = g1g2H = g1Hg2H = ϕ(g1)ϕ(g2).

The kernel of this homomorphism is H. The following theorems describe
the relationships between group homomorphisms, normal subgroups, and
factor groups.

Theorem 11.10 First Isomorphism Theorem. If ψ : G → H is
a group homomorphism with K = kerψ, then K is normal in G. Let
ϕ : G → G/K be the canonical homomorphism. Then there exists a
unique isomorphism η : G/K → ψ(G) such that ψ = ηϕ.
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Proof. We already know that K is normal in G. Define η : G/K → ψ(G)
by η(gK) = ψ(g). We first show that η is a well-defined map. If g1K =
g2K, then for some k ∈ K, g1k = g2; consequently,

η(g1K) = ψ(g1) = ψ(g1)ψ(k) = ψ(g1k) = ψ(g2) = η(g2K).

Thus, η does not depend on the choice of coset representatives and the
map η : G/K → ψ(G) is uniquely defined since ψ = ηϕ. We must also
show that η is a homomorphism. Indeed,

η(g1Kg2K) = η(g1g2K)

= ψ(g1g2)

= ψ(g1)ψ(g2)

= η(g1K)η(g2K).

Clearly, η is onto ψ(G). To show that η is one-to-one, suppose that
η(g1K) = η(g2K). Then ψ(g1) = ψ(g2). This implies that ψ(g−1

1 g2) = e,
or g−1

1 g2 is in the kernel of ψ; hence, g−1
1 g2K = K; that is, g1K = g2K.

■
Mathematicians often use diagrams called commutative diagrams

to describe such theorems. The following diagram “commutes” since
ψ = ηϕ.

ψ

ϕ η

G H

G/K

Example 11.11 Let G be a cyclic group with generator g. Define a map
ϕ : Z → G by n 7→ gn. This map is a surjective homomorphism since

ϕ(m+ n) = gm+n = gmgn = ϕ(m)ϕ(n).

Clearly ϕ is onto. If |g| = m, then gm = e. Hence, kerϕ = mZ and
Z/ kerϕ = Z/mZ ∼= G. On the other hand, if the order of g is infinite,
then kerϕ = 0 and ϕ is an isomorphism of G and Z. Hence, two cyclic
groups are isomorphic exactly when they have the same order. Up to
isomorphism, the only cyclic groups are Z and Zn. □

Theorem 11.12 Second Isomorphism Theorem. Let H be a sub-
group of a group G (not necessarily normal in G) and N a normal sub-
group of G. Then HN is a subgroup of G, H ∩N is a normal subgroup
of H, and

H/H ∩N ∼= HN/N .
Proof. We will first show that HN = {hn : h ∈ H,n ∈ N} is a subgroup
of G. Suppose that h1n1, h2n2 ∈ HN . Since N is normal, (h2)−1n1h2 ∈
N . So

(h1n1)(h2n2) = h1h2((h2)
−1n1h2)n2

is in HN . The inverse of hn ∈ HN is in HN since

(hn)−1 = n−1h−1 = h−1(hn−1h−1).
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Next, we prove that H∩N is normal in H. Let h ∈ H and n ∈ H∩N .
Then h−1nh ∈ H since each element is in H. Also, h−1nh ∈ N since N
is normal in G; therefore, h−1nh ∈ H ∩N .

Now define a map ϕ from H to HN/N by h 7→ hN . The map ϕ is
onto, since any coset hnN = hN is the image of h in H. We also know
that ϕ is a homomorphism because

ϕ(hh′) = hh′N = hNh′N = ϕ(h)ϕ(h′).

By the First Isomorphism Theorem, the image of ϕ is isomorphic to
H/ kerϕ; that is,

HN/N = ϕ(H) ∼= H/ kerϕ.

Since
kerϕ = {h ∈ H : h ∈ N} = H ∩N ,

HN/N = ϕ(H) ∼= H/H ∩N . ■
Theorem 11.13 Correspondence Theorem. Let N be a normal
subgroup of a group G. Then H 7→ H/N is a one-to-one correspondence
between the set of subgroups H containing N and the set of subgroups of
G/N . Furthermore, the normal subgroups of G containing N correspond
to normal subgroups of G/N .
Proof. Let H be a subgroup of G containing N . Since N is normal in
H, H/N makes is a factor group. Let aN and bN be elements of H/N .
Then (aN)(b−1N) = ab−1N ∈ H/N ; hence, H/N is a subgroup of G/N .

Let S be a subgroup of G/N . This subgroup is a set of cosets of N . If
H = {g ∈ G : gN ∈ S}, then for h1, h2 ∈ H, we have that (h1N)(h2N) =
h1h2N ∈ S and h−1

1 N ∈ S. Therefore, H must be a subgroup of G.
Clearly, H contains N . Therefore, S = H/N . Consequently, the map
H 7→ H/N is onto.

Suppose that H1 and H2 are subgroups of G containing N such that
H1/N = H2/N . If h1 ∈ H1, then h1N ∈ H1/N . Hence, h1N = h2N ⊂
H2 for some h2 in H2. However, since N is contained in H2, we know
that h1 ∈ H2 or H1 ⊂ H2. Similarly, H2 ⊂ H1. Since H1 = H2, the map
H 7→ H/N is one-to-one.

Suppose that H is normal in G and N is a subgroup of H. Then it
is easy to verify that the map G/N → G/H defined by gN 7→ gH is a
homomorphism. The kernel of this homomorphism is H/N , which proves
that H/N is normal in G/N .

Conversely, suppose that H/N is normal in G/N . The homomor-
phism given by

G→ G/N → G/N

H/N

has kernel H. Hence, H must be normal in G. ■
Notice that in the course of the proof of Theorem 11.13, p. 143, we

have also proved the following theorem.

Theorem 11.14 Third Isomorphism Theorem. Let G be a group
and N and H be normal subgroups of G with N ⊂ H. Then

G/H ∼=
G/N

H/N
.

Example 11.15 By the Third Isomorphism Theorem,

Z/mZ ∼= (Z/mnZ)/(mZ/mnZ).
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Since |Z/mnZ| = mn and |Z/mZ| = m, we have |mZ/mnZ| = n. □

Sage. Sage can create homomorphisms between groups, which can be
used directly as functions, and then queried for their kernels and images.
So there is great potential for exploring the many fundamental relation-
ships between groups, normal subgroups, quotient groups and properties
of homomorphisms.

11.3 Exercises
1. Prove that det(AB) = det(A)det(B) for A,B ∈ GL2(R). This

shows that the determinant is a homomorphism from GL2(R) to
R∗.

2. Which of the following maps are homomorphisms? If the map is a
homomorphism, what is the kernel?

(a) ϕ : R∗ → GL2(R) defined by

ϕ(a) =

(
1 0

0 a

)

(b) ϕ : R → GL2(R) defined by

ϕ(a) =

(
1 0

a 1

)

(c) ϕ : GL2(R) → R defined by

ϕ

((
a b

c d

))
= a+ d

(d) ϕ : GL2(R) → R∗ defined by

ϕ

((
a b

c d

))
= ad− bc

(e) ϕ : M2(R) → R defined by

ϕ

((
a b

c d

))
= b,

where M2(R) is the additive group of 2×2 matrices with entries
in R.

3. Let A be an m×n matrix. Show that matrix multiplication, x 7→ Ax,
defines a homomorphism ϕ : Rn → Rm.

4. Let ϕ : Z → Z be given by ϕ(n) = 7n. Prove that ϕ is a group
homomorphism. Find the kernel and the image of ϕ.

5. Describe all of the homomorphisms from Z24 to Z18.
6. Describe all of the homomorphisms from Z to Z12.
7. In the group Z24, let H = ⟨4⟩ and N = ⟨6⟩.

(a) List the elements in HN (we usually write H + N for these
additive groups) and H ∩N .
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(b) List the cosets in HN/N , showing the elements in each coset.

(c) List the cosets in H/(H ∩ N), showing the elements in each
coset.

(d) Give the correspondence between HN/N and H/(H ∩N) de-
scribed in the proof of the Second Isomorphism Theorem.

8. If G is an abelian group and n ∈ N, show that ϕ : G → G defined
by g 7→ gn is a group homomorphism.

9. If ϕ : G→ H is a group homomorphism and G is abelian, prove that
ϕ(G) is also abelian.

10. If ϕ : G → H is a group homomorphism and G is cyclic, prove that
ϕ(G) is also cyclic.

11. Show that a homomorphism defined on a cyclic group is completely
determined by its action on the generator of the group.

12. If a group G has exactly one subgroup H of order k, prove that H
is normal in G.

13. Prove or disprove: Q/Z ∼= Q.
14. Let G be a finite group and N a normal subgroup of G. If H is a

subgroup of G/N , prove that ϕ−1(H) is a subgroup in G of order
|H| · |N |, where ϕ : G→ G/N is the canonical homomorphism.

15. Let G1 and G2 be groups, and let H1 and H2 be normal subgroups
of G1 and G2 respectively. Let ϕ : G1 → G2 be a homomorphism.
Show that ϕ induces a homomorphism ϕ : (G1/H1) → (G2/H2) if
ϕ(H1) ⊂ H2.

16. If H and K are normal subgroups of G and H ∩K = {e}, prove that
G is isomorphic to a subgroup of G/H ×G/K.

17. Let ϕ : G1 → G2 be a surjective group homomorphism. Let H1 be
a normal subgroup of G1 and suppose that ϕ(H1) = H2. Prove or
disprove that G1/H1

∼= G2/H2.
18. Let ϕ : G → H be a group homomorphism. Show that ϕ is one-to-

one if and only if ϕ−1(e) = {e}.
19. Given a homomorphism ϕ : G → H define a relation ∼ on G by

a ∼ b if ϕ(a) = ϕ(b) for a, b ∈ G. Show this relation is an equivalence
relation and describe the equivalence classes.

11.4 Additional Exercises: Automorphisms
1. Let Aut(G) be the set of all automorphisms of G; that is, isomor-

phisms from G to itself. Prove this set forms a group and is a
subgroup of the group of permutations of G; that is, Aut(G) ≤ SG.

2. An inner automorphism of G,

ig : G→ G,

is defined by the map
ig(x) = gxg−1,

for g ∈ G. Show that ig ∈ Aut(G).
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3. The set of all inner automorphisms is denoted by Inn(G). Show that
Inn(G) is a subgroup of Aut(G).

4. Find an automorphism of a group G that is not an inner automor-
phism.

5. Let G be a group and ig be an inner automorphism of G, and define
a map

G→ Aut(G)

by
g 7→ ig.

Prove that this map is a homomorphism with image Inn(G) and
kernel Z(G). Use this result to conclude that

G/Z(G) ∼= Inn(G).
6. Compute Aut(S3) and Inn(S3). Do the same thing for D4.
7. Find all of the homomorphisms ϕ : Z → Z. What is Aut(Z)?
8. Find all of the automorphisms of Z8. Prove that Aut(Z8) ∼= U(8).
9. For k ∈ Zn, define a map ϕk : Zn → Zn by a 7→ ka. Prove that ϕk

is a homomorphism.
10. Prove that ϕk is an isomorphism if and only if k is a generator of

Zn.
11. Show that every automorphism of Zn is of the form ϕk, where k is

a generator of Zn.
12. Prove that ψ : U(n) → Aut(Zn) is an isomorphism, where ψ : k 7→

ϕk.


