Abstract Algebra I Practice Problems (Wed)

1. Suppose a group G of order 35 acts on a set S of size 9. Are there any fixed points? Prove your answer. [Hint: First, write down what sizes the orbits can be]

Solution: Yes, there are at least two fixed points. Recall that an object $x \in S$ is a fixed point if and only if the orbit of x consists of only x.

Proof: By the Orbit-Stabilizer Theorem, the size of the orbit must divide 35, so the size of an orbit can be 1, 5, or 7. So the possible orbit sizes are the following:

9 orbits, each of size 1.

one orbit of size 5, and four orbits (each of size 1).

one orbit of size 7, and two orbits (each of size 1).

- 2. Let H be a subgroup of G and let $x \in G$. You can use, without proof, a previous result (from egunawan.github.io/algebra/slides/sec3p3.pdf) that the set xHx^{-1} is a subgroup of G.
 - (a) Prove that $H \cong xHx^{-1}$. [*Hint*: Define a map and show it is (i) a homomorphism, (ii) injective, and (iii) surjective.]

Solution: Define f: H → xHx⁻¹ by f(h) = xhx⁻¹.
(i) To show that f is a homomorphism, let a, b ∈ H. Then f(ab) = xabx⁻¹ = xax⁻¹xbx⁻¹ = f(a)f(b).

(ii) To show that f is injective, let f(a) = f(b). Then xax⁻¹ = xbx⁻¹. First multiply both sides on the right by x, then multiply both sides on the left by x⁻¹. (iii) To show that f is onto, let y ∈ xHx⁻¹. This means that y = xhx⁻¹ for some h ∈ H. Then f(h) = xhx⁻¹ = y.

(b) Prove that if H is the unique subgroup of G of (finite) order |H|, then H must be normal. You may use the result of Part (a) even if you didn't prove it.

Solution: By Part (a), $xHx^{-1} \cong H$ for all $x \in G$, so $|H| = |xHx^{-1}|$ for all $x \in G$. Since H is the unique subgroup of order |H|, we must have $H = xHx^{-1}$ for all $x \in G$. So $H \triangleleft G$.

- 3. Answer the following questions about group actions.
 - (a) Suppose G acts on itself (so S = G) by conjugation. Then the orbit of any element
 - $x \in G$ is ______. (Be as specific as possible!).

Solution: See answer in Slides Sec 5.3 "Examples of group actions", Example 5.

(b) Let $G = S_4 = \langle (12), (23), (34) \rangle$ act on itself (so S = G) by conjugation, and let $\pi = (12)(34)$. Find $Orb(\pi)$ and $Stab(\pi)$. [*Hint*: First, use the orbit-stabilizer theorem to determine how big they are.]

Solution: We know that $\operatorname{Orb}(\pi)$ is the conjugacy class of π . The conjugacy class of π consists of the permutations which can be written as (ab)(cd) in cycle notation. So $\overline{\operatorname{Orb}(\pi) = \{\pi, (13)(24), (14)(23)\}}$, which is of size 3.

By the Orbit-Stabilizer Theorem, we know the order of $\text{Stab}(\pi)$ is $|S_4|/|\operatorname{Orb}(\pi)| = 24/3 = 8$.

We know of the elements in $\text{Stab}(\pi)$ is the identity permutation.

<u>Possible method 1</u>: Draw the orbit of π as part of the action diagram using the given generating set for S_4 . Then compute all possible compositions of arrows/loops starting at π and ending at π . You know to stop computing when you get 8 elements.

<u>Possible method 2</u>: Note/recall that $p^{-1}(12)(34)p = (p(1) \ p(2)) \ (p(3) \ p(4))$.

So a permutation p is in $\text{Stab}(\pi)$ if and only if $(p(1) \quad p(2)) \quad (p(3) \quad p(4)) = (12)(34)$. For example, we can have p(1) = 4, p(2) = 3 and p(3) = 1, p(4) = 2, which means $p = (1 \ 4 \ 2 \ 3)$.

Using either method 1 or method 2, you should get that $\text{Stab}(\pi)$ consists of the following 8 permutations:

e

- (12)
- (34)
- (12)(34)
- (13)(24)
- (14)(23)
- (1324)
- (1423)

4. Let $f: G \to H$ be a homomorphism, and let $K = \ker f$. Then, by a previous result, $K \triangleleft G$ (you don't need to prove).

Prove the Fundamental Homomorphism Theorem: $G/K \cong \text{Im } f$. Start by defining the map:

 $i: G/K \longrightarrow \operatorname{Im} f, \qquad i(gK) := f(g).$

[You need to show that (i) i is well-defined, (ii) a homomorphism, (iii) 1–1, and (iv) onto. See egunawan.github.io/algebra/slides/notes/hw06iso1st.pdf]

Solution: To prove that *i* is well-defined, we need to show that if aK = bK then i(aK) = i(bK).

Suppose aK = bK. Then, for some $k \in K$, we have

$$ak = b. \tag{1}$$

Then

i(aK) = f(a)= $f(a) e_H$ = f(a)f(k) since $k \in K = \text{Ker } f$ = f(ak) since f is a homomorphism = f(b) by (1) = i(bK) by definition of the map i

Solution: To prove that *i* is a homomorphism, we need to show that $i(aK \cdot bK) = i(aK)i(bK)$. Recall that the binary operation for the quotient group is $aK \cdot bK := abK$. Then

$$\begin{split} i(aK \cdot bK) &= i(abK) & \text{by definition of the binary operation of } G/K \\ &= f(ab) & \text{by definition of } i \\ &= f(a)f(b) & \text{since } f \text{ is a homomorphism} \\ &= i(aK)i(bK) & \text{by definition of } i \end{split}$$