- 1. Imagine that you have 1-cent coin and a 5-cent coin sitting side by side. At first, assume that both coins are showing heads (as opposed to tails), and the 1-cent coin is on the left. Consider the group generated by the following two actions.
 - S: Switch left and right coins.
 - f: Flip over the left coin.

What familiar group is this isomorphic to? Prove your answer.

Solution: Draw the Cayley diagram for $\langle S, f \rangle$ which turns out to have 8 elements and has the same structure as a Dihedral group.

2. For $n \ge 1$, let $[\pm n]$ denote the set $\{-n, -(n-1), \ldots, -1\} \cup \{1, 2, \ldots, n\}$. Let $S_{[\pm n]}$ denote the set of all bijections from $[\pm n]$ to $[\pm n]$.

Review from Exam 2:

• Define the set

 $S^B_n := \{ \text{bijections } w : [\pm n] \rightarrow [\pm n] \text{ where } w(-a) = -w(a) \},$

which is a subset of $S_{[\pm n]}$.

For example, let p = (2 - 4) be the function which swaps 2 and -4 and p(j) = j for all other numbers j. Then $p \in S_{[\pm 4]}$, but $p \notin S_4^B$ because $p(-2) = -2 \neq -4 = -p(2)$.

• Give an example of a non-identity function which is in S_4^B .

Solution: For example, p = (2 - 4)(-2 4) would work.

• Prove that the set S_n^B is closed under function composition (using the above definition of the set).

Solution: Suppose $h, g \in S_n^B$. Then

$$f(g(-i)) = f(-g(i)) \text{ since } g \in S_n^B$$
$$= -f(g(i)) \text{ since } f \in S_n^B$$

(a) Define the set

 $S_n^d := \{ w \in S_n^B \mid \text{ the number of positive } i \text{ where } w(i) < 0 \text{ is even } \},$

which happens to be a subgroup of S_n^B .

For example, below are all eight elements of S_2^B , but only some of them are in S_2^d .

- The identity function is in S_2^d
- The function $\mathbf{f} := (\mathbf{1}, \mathbf{2})(-\mathbf{1}, -\mathbf{2})$ swaps 1 and 2; and swaps -1 and -2. Note $f \in S_2^d$ because 0 positive numbers are sent to negative numbers.

- The function g := (1, −1) swaps 1 and −1, and it fixes 2 and −2.
 Note g is not in S^d₂ because exactly one positive number is sent to a negative number.
- The function $\mathbf{gf} = (1, -1) (1, 2)(-1, -2) = (1, -2, -1, 2)$ is a 4-cycle $1 \mapsto -2 \mapsto -1 \mapsto 2 \mapsto 1$. Note gf is not in S_2^d because exactly one positive number is sent to a negative number.

Determine whether the following functions (which are in S_2^B) are also in S_2^d .

- gfg = (1, -2)(-1, 2)
- gfgf = (1, -1)(2, -2)
- gfgfg = (2, -2)
- gfgfgf = (1, 2, -1, -2)

Solution:

See take-home questions for the final exam

- (b) What familiar group is S_2^d isomorphic to? Prove your answer.
- (c) Pick a minimal generating set for S_2^d and use it to draw a Cayley diagram for S_2^d . Clearly label each arrow and each vertex of the Cayley diagram.
- (d) Compute all conjugacy classes of S_2^B . That is, write down all $\operatorname{cl}_{S_2^B}(x) := \{pxp^{-1} \mid p \in S_2^B\}$. Recall that s_2^B is isomorphic to the 8-element dihedral group D_4 Compute all conjugacy classes of S_2^d .
- 3. (a) Use your computation to conjecture when elements in S_n^B are conjugate, for $n \ge 2$. Conjecture when elements in S_n^d are conjugate, for $n \ge 3$. (Hint: Similar to Thm 8. Attempt to prove your conjecture using Lemma 2)
 - (b) The group S^d₃ has a minimal generating set with three generators a = (1 2) (−1 − 2), b = (2 3) (−2 − 3), c = (1 − 2) (−1 2) Make a Cayley diagram for S^d₃ using a, b, c as generators. You can use the unlabeled graph given below.
 - (a) Your tasks:
 - Label the bottom-most vertex with the identity function e.
 - Label the left vertex connected to e with the function a.
 - Label the right vertex connected to e with the function c.
 - Label the top-most vertex with the function abacba = cbacbc = (2 2) (3 3)
 - Color all edges appropriately, so that each edge corresponds to one of a, b, and c. Hint: The relation corresponding to the diamond shape means that two of the generators commute with each other. Determine whether ab = ba or ac = ca or bc = cb. Hint: A relation corresponding to a hexagon shape mimics the relation xyx = yxy for the (Hexagon-shape) Cayley diagram for $D_3 \cong S_3$.

• There are 24 vertices total, but you only need to label the 12 "outer" vertices with the functions in S_3^d in cycle notation. Above, I've already told you where to put four of the functions, so you only need to label the remaining 8 vertices in cycle notation.

- (c) Use this Cayley diagram to write down a group presentation for S_3^d . Hint: The relations are the doubled-sided arrows, diamonds and hexagons.
- (d) If $n \ge 1$, give a formula for the order of S_n^B . Prove your answer. If $n \ge 1$, give a formula for the order of S_n^d . Prove your answer.

Solution:

See take-home questions for the final exam

- 4. Consider the homomorphism $\phi: D_4 \to V_4$ determined by $\phi(r) = h$ and $\phi(f) = v$.
 - (a) Find the images of the remaining six elements of D_4 .
 - (b) Is ϕ injective?

Solution: No, $\ker(\phi) = \{e, r^2\}$

- (c) Find $\operatorname{Ker}(\phi)$.
- (d) Find $Im(\phi)$.
- (e) What does the Fundamental/first Homomorphism Theorem tell us about ϕ ? (Your answer should be more specific than just stating the FHT.)

Solution: $D_4/\langle r^2 \rangle$ is isomorphic to $\text{Im}(\phi) = V_4$.

- 5. (a) Define a map f: Orb(x) to G/Stab(x) which is a bijection. (See Lemma 1 in Slides 5.2: egunawan.github.io/algebra/slides/sec5p2.pdf)
 - **Carefully** prove Lemma 1. Divide into parts the proofs that (i) the map is well-defined, (ii) the map is injective, and (iii) the map is surjective, like in the slides. See all three proofs in Slides 5.2: egunawan.github.io/algebra/slides/sec5p2.pdf
 - For each of the examples of group action (Example 3: G acting on itself by right multiplication, Example 5: S_3 or D_6 acting on itself by conjugation, and Example 7: S_3 acting on cosets of $H = \langle (12) \rangle$ by right multiplication) in slides egunawan.github.io/algebra/slides/sec5p3.pdf, do the following:
 - (i) pick an element $x \in S$;
 - (ii) compute its orbit Orb(x);
 - (iii) compute the subgroup $\operatorname{Stab}(x)$;
 - (iv) use Lemma 1 to prove that Orb(x) is in bijection with G/Stab(x).
 - (b) Carefully state the Orbit-Stabilizer theorem (Theorem 1).
 - Use Lemma 1 to prove the Orbit-Stabilizer theorem.
- 6. (a) Prove that if H < G and [G:H] = 2, then $H \lhd G$.

Solution: The notation [G:H] = 2 means that there are exactly two left cosets of H. So the group G is partitioned into H and another left coset xH, hence, for all $x \notin H$, we have xH = G - H. Similarly, for all $x \notin H$, we have Hx = G - H.

- (b) Formally define the following terms: (i) an *action* of a group G on a set S, (ii) the orbit of $s \in S$, (iii) the stabilizer of $s \in S$.
- (c) Carefully state the orbit-stabilizer theorem.
- (d) Let G act on itself by conjugation, that is, S = G and we have a homomorphism $\phi: G \to \text{Perm}(S)$, where

 $\phi(g)$ is the permutation sending each x to $g^{-1}xg$.

Carefully describe the orbits, the stabilizers, and the fixed points of this action.

Solution:

The orbits are the conjugacy classes, so, the orbit Orb(x) is $cl_G(x)$, the conjugacy class of x. See answer in Slides 5.3: egunawan.github.io/algebra/slides/sec5p3.pdf

(e) Prove that the size of any conjugacy class divides |G|.

Solution: See answer in Slides 5.3: egunawan.github.io/algebra/slides/sec5p3.pdf

(f)

Definition 1. A nontrivial group G is called *simple* if its only normal subgroups are the trivial group and the group G itself.

Show that if a group G contains an element $x \in G$ that has exactly two conjugates (itself included), then G is not simple. [*Hint*: You can use the previous parts of the problem!]

Solution: Suppose G contains an element which has exactly two conjugates, so $cl_G(x)$ has size exactly 2.

Consider the group action described in part (d). Recall that $\operatorname{Stab}(x)$ is a subgroup of G. Note that $\operatorname{Stab}(x)$ is not the entire group G, otherwise $\operatorname{cl}_G(x)$ would be the singleton $\{x\}$.

We will now prove that $\operatorname{Stab}(x)$ is a normal subgroup of G.

Lemma 1 (for the Orbit-Stabilizer theorem) says that there is a bijection between Orb(x) and the set G/Stab(x), the set of right cosets of Stab(x). So there is a bijection between $cl_G(x)$ and the set G/Stab(x).

Since $cl_G(x)$ has size 2, the set $G/\operatorname{Stab}(x)$ also has size 2, which means $[G:\operatorname{Stab}(x)] = 2$. By part (a), $\operatorname{Stab}(x) \triangleleft G$.

Fact Sheet

Lemma 2. For any $p \in S_n$, we have $p^{-1}(a_1 a_2 \ldots a_k) p = (p(a_1) p(a_2) \ldots p(a_k))$, reading left to right.

Definition 3. Let H be a subgroup of G. Recall that, if $x \in G$, the set

$$xH := \{xh \mid h \in H\}$$

is a *left coset* of H.

Theorem 4. Assume G is finite. If H is a subroup of G, then |H| divides |G|.

Proof. Suppose there are *n* left cosets of the subgroup *H*. Since they are all the same size and they partition *G*, we must have $|G| = \underbrace{|H| + \cdots + |H|}_{n \text{ copies}} = n |H|.$

Corollary 5. If G is a finite group and H is a subgroup of G, then $[G:H] = \frac{|G|}{|H|}$.

Theorem 6. Let H be a subgroup of G. Then the following are all equivalent.

- (i) gH = Hg for all $g \in G$; ("left cosets are right cosets");
- (ii) $gHg^{-1} = H$ for all $g \in G$; ("only one conjugate subgroup")
- (iii) $ghg^{-1} \in H$ for all $h \in H, g \in G$; ("closed under conjugation").

Corollary 7. If [G:H] = 2 then $H \triangleleft G$.

Theorem 8. Two permutations in S_n are conjugate if and only if they have the same cycle type.

Definition 9. A group homomorphism is a function $\phi: (G_1, *) \to (G_2, \circ)$ satisfying

 $\phi(a * b) = \phi(a) \circ \phi(b),$ for all $a, b \in G_1$.

Proposition 10. Let $f: G_1 \to G_2$ be a homomorphism of groups. Then

- i. If e_1 is the identity of G_1 , then $f(e_1)$ is the identity of G_2 .
- ii. For any element $g \in G_1$, $f(g^{-1}) = [f(g)]^{-1}$.
- iii. If H_1 is a subgroup of G_1 , then $f(H_1)$ is a subgroup of G_2 .
- iv. If H_2 is a subgroup of G_2 , then $f^{-1}(H_2) = \{g \in G_1 : f(g) \in H_2\}$ is a subgroup of G_1 .