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1 Review cosets

1. (a) Let H be a subgroup of a group G, and let x ∈ G. Define a bijective map f from H to xH.

Solution: Define
f : H −→ xH , by f(h) = xh

for all h ∈ H.

(b) Show that this map is surjective.

Solution: Suppose b ∈ xH. Then by definition of left coset, b = xh for some h ∈ H. Let a := h. Then
f(a) = xa = xh = b, as needed.

(c) Suppose G is a non-abelian group of order 1000 and H is a subgroup of order 20. Let x be an element of G which is
not in H. (i) How many elements are in the left coset xH? (ii) How many elements are in the right coset Hx?

Solution: (i-ii)The size of every left coset (and every right coset) is the same as the size of H, so the answer is 20
for both questions.

How many left cosets of H are there?

Solution: By the corollary of Lagrange’s Theorem, there are 1000/20 = 50 left cosets of H.

2 Related to Sec 3.3 normal subgroups

Theorem 1 (Theorem 3 from Slides 3.3). Let H be a subgroup of G. Then the following are all equivalent.

(i) gH = Hg for all g ∈ G; (“left cosets are right cosets”);

(ii) gHg−1 = H for all g ∈ G; (“only one conjugate subgroup”)

(iii) ghg−1 ∈ H for all h ∈ H, g ∈ G; (“closed under conjugation”).

(iv) The subgroup H is called normal in G.
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2. (a) Consider the subgroup H = {(1), (1, 2)} of S3. Is H normal?

Solution: No, you can check that (123)H is not equal to H(123).

Another example that would work is (13)H 6= H(13).

A possibly faster way to determine this is to see that (13) and (23) are conjugate to (12) but they are not in H,
hence failing part (iii) of the above theorem for being normal.

(b) Consider the subgroup J = {(1), (123), (132)} of S3. Is J normal?

Solution: Yes, there is only other left coset of J (other than J itself), and there is only other other right coset of
J (other than J), so they must be the same.

This satisfies part (i) of the above theorem, Theorem 1, for being normal.

(c) Consider the subgroup H = 〈(1234)〉 of S4. Is H normal?

Solution: No. A possible proof: We know that every 4-cycle is conjugate to (1234), but not every 4-cycle is in
H = {(1), (1234), (13)(24), (1432)}. For example, the 4-cycle (1324) is not in H.

(d) Let n > 2. Is An a normal subgroup of Sn?

Solution: Yes. Proof: There are exactly two left cosets of An in Sn. So the left coset xAn which is not equal to
An must equal the right coset which is not equal to An.

(e) Consider a mystery subgroup K of Z5 × Z8. Is K normal?

Solution: Every subgroup of an abelian group is normal, so K is normal.

(f) Prove or disprove (with a counterexample): If K CH CG, then K CG.

Solution: This is false. See key to HW5.

Note: The non-abelian group of order 6 (S3 or D3) is too small to produce this example because the maximum
chain of distinct subgroups {e} ≤ H ≤ D3, and {e} is always normal. There is no non-abelian group of order 7, so
try to find an example within a non-abelian group of order 8.

A possible strategy: We’ve seen that every subgroup is normal in its normalizer. Find a subgroup K (which is not
normal in G) and let H be the normalizer of K.

Another strategy: For a simple example, choose K and H from the subgroups of D4. The edge between each arrow
(the index of H in K) is 2, so each subgroup K is normal in subgroup H whenever there is an edge between them.

3. Let H be a subgroup of G. Given two fixed elements a, b ∈ G, define the sets

aHbH := {ah1bh2 | h1, h2 ∈ H} and abH := {abh | h ∈ H} .

(a) Prove that if H is normal then aHbH ⊂ abH.

Solution: To show aHbH ⊂ abH, let h1, h2 ∈ H. We need to show that ah1bh2 can be written as abh for some
h ∈ H. Since H is normal in G, the left coset bH is equal to the right coset Hb. Hence we can write h1b as bh3 for
some h3 ∈ H, so ah1bh2 = abh3h2, which is in abH since h3h2 ∈ H.
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(b) Prove that the statement is false if we remove the “normal” assumption. That is, give a specific G and H and a, b ∈ G
such that aHbH is not a subset of abH.

Solution: Possible proof: Let G = D3, let H = 〈f〉. But rfre = rfr = f , which is in rHrH but not in
r2H = {r2, r2f}, so rHrH 6= r2H.

Try to come up with a similar proof but using S3.

Possible scratch work (thought process):

Let G = D3 (because every group with order 5 or lower is abelian). To come up with a counterexample, I have to
make sure to pick a non-normal subgroup H (since the statement is true if H is a normal subgroup), so I can pick
one of the subgroups which is generated by exactly one reflection, 〈f〉 or 〈rf〉 or 〈r2f〉.

I pick H := {e, f}. To come up with a counterexample, I have to make sure to pick a, b /∈ H (otherwise the
statement would be true).

First, I try a = r and b = r, and I check whether aHbH = abH.

I first compute abH because it is easier to compute (How do I know it’s easier to compute? Because abH is a left
coset of H and we have done a lot of practice computing left cosets, and also because from Definition ??, we see
abH has a simpler definition that the other set).

Computing abH, I get abH = r2H = {r2, r2f}.

Now, I try to find an element in aHbH = rHrH which is not in r2H. Since H has only two elements, to compute
all elements of aHbH I just need to compute aebe, aebf , afbe, and afbf . But I see that the first two are in abH
by Definition of abH, so I will only check the last two elements.

I try afbe = rfr = f , which is not in abH. This example would be enough to show that rHrH 6= rrH.

(You can also try a = b = rf , or a = r and b = rf , and see what happens.)

(c) In class, we proved that multiplication of cosets of N is well-defined if N is a normal subgroup.

Give an example where “multiplication” of cosets is not well-defined. That is, give a group G and a subgroup H where
a1H = a2H and b1H = b2H but a1b1H 6= a2b2H.

Solution: You can use the sameG andH as in the previous question. Just make sure your a1, a2, b1, b2 are not inH.

Another possible example is the following:

Consider the symmetric group S3 and let J := 〈(1 2)〉.
Then the three left cosets of J are:

(a) J = {e, (1 2)},

(b) (132)J = (13)J = (1 3), (1 3 2)}, and

(c) (1 2 3)J = (2 3)J = {(2 3), (1 2 3)}.

Take a1 := (132), a2 := (13),
b1 := (123), and b2 := (23).

Then a1b1J = (132)(123)J = eJ = J , but a2b2J = (13)(23)J = (123)J 6= J .

(d) Prove that if aH = bH then a−1b ∈ H. (Use only definition of left coset and the fact that G is a group. Do not
“multiply” both sides by a−1H.)
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3 Related to Sec 3.4 direct products

4. Give two groups A and B, what is the definition of A×B?
What is the binary operation on A×B?
What is the identity element of A×B?

Solution: (1A, 1B), where 1A is the identity element of A, and 1B is the identity element of B.

If (a, b) ∈ A×B, what is the inverse (a, b)−1 equal to?

Solution: (a−1, b−1)

If none of A and B is the trivial group, then A × B is guaranteed to have at least four normal subgroups. What are those
four subgroups?

Solution: See Slide 9 of Slides Sec 3.4 egunawan.github.io/algebra/slides/sec3p4.pdf

5. (a) True or false? The order of the group Dn is the same as the order of the group C2 × Cn.

Solution: True, the order is 2n for both.

(b) True or false? The group Dn is isomorphic to the group C2 × Cn.

Solution: False. If n ≥ 3, the Dihedral group Dn is non-abelian, but C2 × Cn is.

(c) True or false? The group C14 is isomorphic to the group C2 × C7.

Solution: True.
A possible proof: Note that Z2 × Z7 can be generated by the single element (1, 1) ∈ Z2 × Z7 which has order
14 = lcm(2, 7), so it is a cyclic group of order 14.

(d) True or false? The group Z16 is isomorphic to the group Z4 × Z4.

Solution: False. The group Z16 contains an element of order 16, that is, the number 1. Every element in the
group Z4 has order 1, 2, or 4, so every element in the group Z4 × Z4 also has order 1, 2, or 4.

(e) Is Z12 isomorphic to Z2 × Z6?

Solution: No. The group Z2 × Z6 has no element of order 12.

(f) Write Z12 as a nontrivial direct product.

Solution: Z4 × Z3.

(g) i. Write down all the subgroups of Z3 × Z3.

Solution: Check the list of subgroups in Group Explorer.
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ii. Use your answer to show that Z3 × Z3 is not the same group as Z9.

Solution: See Example 3.28 in http://abstract.ups.edu/aata/section-subgroups.html, which explains why Z/2Z×
Z/2Z is not the same group as Z/4Z.

4 Related to Sec 3.5 Quotient groups

6. Let H be a subgroup of G.

(a) What does the notation G/H mean?

Solution: The set of all left cosets of H in G, that is, {xH | x ∈ G}.

(b) When does the quotient G/H form a group?

Solution: When H is a normal subgroup of G.

(c) If G/N is a quotient group, what is the binary operation of the quotient group G/N?

Solution: aN · bN := abN .

(d) Consider the symmetric group S3 and a subgroup H := 〈(1 2)〉. Is S3/〈(1 2)〉 a quotient group? Prove your answer. If
it is a quotient group, what is it isomorphic to?

Solution: No, S3/〈(1 2)〉 is not a quotient group.

A possible proof: 〈(1 2)〉 is not normal in S3. The left coset (123)〈(1 2)〉 = {(23), (123)} and the right coset
〈(1 2)〉(123) = {(13), (123)} are not equal.

Another way to see that H is not normal is to recall that there are conjugates of (12) which are not in H, namely,
(13) and (23).

(e) Consider the symmetric group S3 and a subgroup J := 〈(1 2 3)〉. Is S3/J a quotient group? Prove your answer. If it is
a quotient group, what is it isomorphic to?

Solution: Yes, S3/J is a quotient group because J is normal in S3.

A possible proof: Since the order of S3 is 6 and the order of J is 3, there are two left cosets of J . Hence the left
coset of J (which is not J itself) must be equal to the right coset of J (which is not equal to J itself).

Another way to see that J is normal is to recall that all conjugates of a 3-cycle are also 3-cycles, and J contains
all 3-cycles of S3.

The quotient froup S3/J is isomorphic to C2 since there are two left cosets of J in S3.

(f) Consider the subgroup H = 〈(1234)〉 of S4. Is S4/H a quotient group? Prove your answer. If it is a quotient group,
what is it isomorphic to?

Solution: No, because H is not normal in S4. A possible proof: We know that every 4-cycle is conjugate to (1234),
but not every 4-cycle is in H = {(1), (1234), (13)(24), (1432)}. For example, the 4-cycle (1432) is not in H.
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(g) Consider the symmetric group S4 and a subgroup J := 〈(1 2 3)〉. Is S4/J a quotient group? Prove your answer. If it is
a quotient group, what is it isomorphic to?

Solution: No, because J is not normal in S4. A possible proof: We know that every 3-cycle is conjugate to (123),
but not every 3-cycle is in J . For example, the 3-cycle (124) is not in J .

7. (a) List all normal subgroups N of D4.

Solution: The trivial subgroup {e},
the only normal subgroup of order 2, 〈r2〉,
all the subgroups of order 4: 〈r〉, 〈r2, f〉, 〈r2, rf〉, and
D4 itself.

(b) For each N above, what familiar group is D4/N isomorphic to?

Solution: The only one that we have to compute carefully is D4/〈r2〉. We know that the number of cosets in
D4/〈r2〉 is 4, but there are two groups of order 4 (up to isomorphism), so let’s list the cosets in D4/〈r2〉:
〈r2〉, r〈r2〉, f〈r2〉, and rf〈r2〉.
By inspection, we see that each element (each coset) in D4/〈r2〉 has order 2, so this quotient group must be iso-
morphic to V4, and not to C4.

Final answer:
D4/{e} ∼= D4

D4/〈r2〉 ∼= V4,
For each subgroup H of order 4, we have D4/H ∼= C2, and
D4/D4

∼= {e}.

5 Related to Sec 3.6 normalizers

Definition 1. The set of elements in G that vote in favor of H’s normality is called the normalizer of H in G, denoted
NG(H). That is,

NG(H) = {g ∈ G : gH = Hg} = {g ∈ G : gHg−1 = H}.

What is the smallest that NG(H) can be?

Solution: H

What is the largest it can be?

Solution: G

When does the latter happens?

Solution: NG(H) = G if and only if H is normal.

8. Let G be the group whose Cayley diagram is shown below, and suppose e is the identity element. Consider the subgroups
A = 〈a〉 = {a, b, c, d, e} and J = 〈j〉 = {e, j, o, t}.
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a b c d e

f g h i j

k l m n o

p q r s t

Carry out the following steps for both of the subgroups A and J . List the cosets element-wise.

(a) Write G as a disjoint union of the subgroup’s left cosets.

(b) Write G as a disjoint union of the subgroup’s right cosets.

(c) Use your coset computation to immediately compute the normalizer of the subgroup. Based on the computation for
the normalizer, what you can say about this subgroup?

Solution: See answer key to HW 5.

The normalizer for one of the subgroups is the entire G, meaning that this subgroup is normal. The normalizer for
the other subgroup is the subgroup itself, meaning this group is as “unnormal” as possible.

(d) If G/A is a group, perform the quotient process and draw the resulting Cayley diagram for G/A. If G/J is a group,
perform the quotient process and draw the resulting Cayley diagram for G/J .

6 Related to Sec 3.7 conjugation of an element, conjugacy classes

Let G be a group and x ∈ G. Review the definition of clG(x).

Solution: clG(x) := {gxg−1 | g ∈ G}

9. (a) Prove that two permutations x, y ∈ Sn are conjugate if and only if they have the same cycle type.

Solution: See the proof of Theorem 5 in notes Sec 3.7: egunawan.github.io/algebra/slides/notes/sec3p7whiteboard.pdf

(b) Prove that (12) and (14) in S6 are conjugate by finding a permutation p ∈ S6 such that p−1(12)p = (14).

Solution: There are many possibilities for p. See the example after Lemma 4 in notes Sec 3.7: egunawan.github.io/algebra/slides/notes/sec3p7whiteboard.pdf

(c) List all permutations in S4 which are conjugate to (1234). Use the fact from part (a).

Solution: The answer is (1234), (1432), (1243), (1342), (1324), (1423). Explanation: The permutations which are
conjugate to (1234) in S4 are all the 4-cycles.

10. Let G be a group and let Z be the set {z ∈ G | gz = zg for all g ∈ G}. Prove that clG(x) = {x} if and only if x ∈ Z.
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Solution: Slide 5 of egunawan.github.io/algebra/slides/sec3p7.pdf

11. Suppose N is a normal subgroup of G. Prove that if x ∈ N , then clG(x) ⊂ N . (This means that every normal subgroup is
the union of a collection of conjugacy classes).

Solution: Let x ∈ N . Since N is normal in G, we have gxg−1 ∈ N for all g ∈ G. Thus, clG(x) := {gxg−1 | g ∈ G} ⊂ N .

7 Related to center of a group

The center of a group G is the set

Z(G) = {z ∈ G | gz = zg, ∀g ∈ G} = {z ∈ G | gzg−1 = z, ∀g ∈ G} .

a. Prove that Z(G) is normal in G by showing ghg−1 ∈ H for all h ∈ H, g ∈ G; (“closed under conjugation”).

Solution: Suppose g ∈ G. By part (iii) of Theorem 1, it is sufficient to show that gzg−1 ∈ Z(G) for all z ∈ Z(G).
But, if z ∈ Z(G), then gzg−1 = z ∈ Z(G) for all g ∈ G.

b. Compute the center of the following groups: C6, D4, D5, D6, D7 Dn.

Solution: C6 is abelian, so the entire group is the center.

The center of D4 is 〈r2〉. Reason: the half circle rotation commutes with every reflection (and every rotation). A
different rotation does not commute with a reflection (for example, f). None of the reflections commutes with r.

The center of D5 is the trivial group. Reason: None of the rotations commutes with f . None of the reflections
commutes with r.

c. Compute the center of Q8.

Recall that the elements of the Quaternion group Q8 = {±1,±i,±j,±k} are governed by the rules i2 = j2 = k2 = −1,
ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j .

Solution: The only element (other than the identity 1) which commutes with every element in Q8 is −1.

d. Consider the group An of even permutations, where n > 3. Prove that (1 2 3) is not in the center of An by producing
another even permutation which does not commute with (1 2 3).

Solution: The element (2 3 4) works. (2 3 4)(1 2 3) = (12)(34)
(1 2 3)(2 3 4) = (13)(24)

e. Consider the group An of even permutations, where n > 3. Prove that (1 2)(3 4) is not in the center of An.

Solution: For example, you can show that the element (1 2 3) does not commute with (1 2)(3 4).

f. Compute the center of A4

Hint: A non-identity permutation in S4 is an even permutation if and only of its cycle notation is of the form (ab)(cd)
or (abc). (Make sure you can prove this!)

Do (ab)(cd) and (abc) commute?
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Solution: Answer: The answer is the trivial group.

Reason: The permutations (abc) and (ab)(cd) do not commute.

(abc)(ab)(cd) = (a)(bdc) and (ab)(cd)(abc) = (acd)(b).

g. Compute the center of S4.

Hint: Every non-identity permutation in S4 can be written in the form (ab), (abc), (abcd), and (ab)(cd). Can you find
a permutation that does not commute with (ab)? With (abcd)?

h. Compute the center of S2.

Solution: This group is abelian, so the center is the entire group.

i. Compute the center of A3.

Solution: This group is abelian, so the center is the entire group. To see that A3 is abelian, you can check that
it can generated by the 3-cycle (123), so it is cyclic. Another way to see that A3 is abelian, is to check its order,
3!/2 which is equal to 3. We’ve seen that every group of order 3 is cyclic.

j. Prove or disprove that “the center of a direct product is the direct product of the centers”, that is, Z(A × B) =
Z(A)× Z(B).

Solution: True. First, it is clear that Z(A×B) ⊃ Z(A)× Z(B).

To show that Z(A×B) ⊂ Z(A)×Z(B), let (z1, z2) ∈ Z(A×B). Then, by definition, (z1, z2)(g1, g2) = (g1, g2)(z1, z2)
for all g1 ∈ A, g2 ∈ B. This means that (z1g1, z2g2) = (g1z1, g2z2) for all g1 ∈ A, g2 ∈ B. In other words, z1g1 = g1z1
and z2g2) = g2z2 for all g1 ∈ A, g2 ∈ B, so z1 ∈ Z(A) and z2 ∈ Z(B).

k. Use what you’ve done so far to compute the center of Dn ×Q8. Draw the Cayley diagram for Z(Dn ×Q8).

Solution: Take the cross product of the center of Dn and the center of Q8. The Cayley diagram is either the one
for Z2 or the one for V4, that is, Z2 × Z2.

8 Related to Sec 4.1 Homomorphisms and 4.2 Kernels

Proposition 1. Let f : G1 → G2 be a homomorphism of groups. Then

(a) If e1 is the identity of G1, then f(e1) is the identity of G2.

(b) For any element g ∈ G1, f(g−1) = [f(g)]−1.

(c) If H1 is a subgroup of G1, then f(H1) is a subgroup of G2.

(d) (i) If H2 is a subgroup of G2, then f−1(H2) = {g ∈ G1 : f(g) ∈ H2} is a subgroup of G1. (ii) Furthermore, if H2 is
normal in G2, then f−1(H2) is normal in G1.

12. Prove all parts of Proposition 1.

Solution: Proofs given under the Proposition 11.4 of Judson: http://abstract.ups.edu/aata/section-group-homomorphisms.html or slides Sec 4.1.

13. (a) Let f : G1 → G2 be a homomorphism of groups. Prove that the kernel of f is a normal subgroup of G1.

Solution: Note that {e2} is a normal subgroup of the codomain G2. By part (d)(ii) of above, f−1({e2}) is normal.

See also proof of Theorem 11.5 of Judson: http://abstract.ups.edu/aata/section-group-homomorphisms.html which is given in the paragraph
between Proposition 11.4 and Theorem 11.5
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(b) Let f : G→ H be a group homomorphism. Show that f is injective if and only if the ker(f) is the trivial group {1G}.

Solution: For full proof, see hand-written notes Section 4.2 “Kernels”: egunawan.github.io/algebra/slides/notes/sec4p2whiteboard.pdf

14. (a) Let f : G1 → G2 be a surjective homomorphism. Prove that, if N CG1, then f(N) is normal in G2.

Solution: We need to show that x2 f(N) x−1
2 ⊂ f(N) for all x2 ∈ G2.

Suppose x2 ∈ G2. Since f is surjective, there is x1 ∈ G1 such that f(x1) = x2. Note that every element in f(N)
can be written as f(n) for some n ∈ N . Then

x2 f(n) x−1
2 = f(x1) f(n) f(x1)−1

= f(x1) f(n) f(x−1
1 )

= f(x1 n x
−1
1 ) ∈ f(N)

since x1 nx
−1
1 ∈ N (because N is normal in G1).

(b) If f : G1 → G2 is a homomorphism and N is a normal subgroup of G1, is it possible that f(N) is not normal in G2? If
so, give a counterexample.

Solution: It is possible. Note that your counterexample would require a non-surjective homormophism.

For example, consider f : C2 = {e, r} → S3 defined by f(r) = (1 2) and let N = C2. Then f(N) = 〈(1 2)〉, which
is not normal in S3.

To see that 〈(1 2)〉 is not normal in S3, check that the left coset and the right coset with coset representative (1 2 3)
are not equal.

15. I. Let φ : (Z,+)→ (Z,+) be the map given by φ(n) = 7n for n ∈ Z. Find the kernel and the image of φ.

Solution: The kernel of φ is the trivial subgroup {0}. The image of φ is 7Z, the subgroup of all integer multiples
of 7.

II. Consider the group homomorphism f : (R.+)→ (C∗,×) defined by

f(θ) = cos θ + i sin θ.

What is the kernel of f?
Give a bijective group homomorphism from the kernel of f to (Z,+). Prove that this map is a group homomorphism.

Solution: From Example 11.7 in Judson Section 11.1: abstract.ups.edu/aata/section-group-homomorphisms.html

Also discussed in class, Example 7 in Slides Sec 4.1 egunawan.github.io/algebra/slides/sec4p1.pdf

III. Let G be a group and let g be some element in G. Consider the group homomorphism from Z to G given by f(n) = gn.

(a) If the order of g is infinite, what is the kernel of f? Justify.

(b) If the order of g is finite, say k, what is the kernel of f? Justify.

Solution: From Example 11.9 in Judson Section 11.1: abstract.ups.edu/aata/section-group-homomorphisms.html

Also discussed in class, Example 3 in Slides Sec 4.2 egunawan.github.io/algebra/slides/sec4p2.pdf

16. (a) Is there a homomorphism f : (Z3,+)→ (Z4,+) where f(1) = 1? Prove your answer.

Solution: No. See a possible proof in egunawan.github.io/algebra/slides/sec4p1.pdf
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(b) True or false? Given two groups A and B, there exists a homomorphism from A to B. Prove your answer.

Solution: True, the map f : A → B where f(x) = 1B for all g ∈ A (where 1B is the identity element in B) is a
homomorphism.

17. (a) Determine all possible homomorphisms from (Z7,+)→ (Z12,+). Prove your answer.

Solution: Let f be such a homomorphism. By Prop 1 part 4 above, the kernel of f must be a subgroup of Z7. By
Lagrange’s Theorem, a subgroup of Z7 must be of order 1 or 7, so the only possible subgroups are {0} and Z7.

If ker(f) = {0}, then f is injective by Slides 4.2 ”Kernels”. So f(Z7) has order 7 (since each element of Z7 is sent
to a unique element in Z12). By Prop 1 part 3 in Slides 4.1, the image of f is a subgroup of Z12. But, again by
Lagrange’s Theorem, no subgroup of Z12 has order 7.

So ker(f) = Z7.

Hence the only possible homomorphism Z7 → Z12 is the zero map f(a) = 0 for all a ∈ Z7.

See also Example 11.8 in Judson Section 11.1: abstract.ups.edu/aata/section-group-homomorphisms.html

(b) Let n ≥ 2. Determine all possible homomorphisms (Zn,+)→ (Z,+). Prove your answer.

Solution: Answer: the only homomorphism Zn → Z is the zero homomorphism, that is, φ(g) = 0 for all g ∈ Zn.

Proof: Suppose there is such a nonzero homomorphism φ : Z/n → Z. Then φ(1) = x for some nonzero x ∈ Z
(otherwise, φ is the zero map).

Then we get

φ(2) = φ(1 + 1) = φ(1) + φ(1) = 2,

φ(0) = φ(1 + 1 + · · ·+ 1) = φ(1) + φ(1) + · · ·+ φ(1) = n .

This is impossible, because φ(0) = 0. (Identity is mapped to the identity.)

18. Given a homomorphism f : G→ H define a relation ∼ on G by a ∼ b if φ(a) = φ(b) for a, b ∈ G.

i. Show that this relation is an equivalence relation.

ii. Describe the equivalence classes. How many classes are there?

Solution: Check the three properties of being an equivalence class.

Description of the equivalence classes: Each element h ∈ f(G) determines an equivalence class of the form {g ∈ G |
f(g) = h}. The equivalence classes are in bijection to the elements of f(G). There are as many equivalence classes as
the number of elements in f(G).

Extra information: If f is a surjection, then there is a bijection between the equivalence classes and H.

9 Related to Sec 4.3 First Isomorphism Theorem

19. (a) Consider the symmetric group S3 and a (normal) subgroup J := 〈(1 2 3)〉. What familiar group is the quotient group
S3/J isomorphic to? Use the Fundamental Theorem of Homomorphism (1st Isomorphism Theorem) to formally prove
your answer.

Solution: S3/J is isomorphic to C2 = ({1,−1}, ·).
To prove this, define a map f : S3 → C2 by sending f(x) = 1 if x is an even permutation and f(x) = −1 if x is an
odd permutation.

We can check that f is a homomorphism by checking the possibilities of xy where x, y are both odd, both even, or
of different parity.
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To see that f is surjective, note that f(e) = 1 since (12)(12) = e, and f((12)) = −1.

We claim that ker(f) = J . To see this, observe that all permutations in J are even, and all permutations not in J
are odd.

By the 1st Isomorphism Theorem, S3/ ker(f) is isomorphic to C2. Since ker(f) = J , the result follows.

(b) Use the Fundamental Theorem of Homomorphism (1st Isomorphism Theorem) to formally prove that Z/nZ is isomorphic
to the cyclic group of order n, that is, Zn.

Solution: See Slide 10 of Slides Sec 4.3: egunawan.github.io/algebra/slides/sec4p3.pdfext or part 4 of my hand-
written notes for the 1st Isomorphism Theorem: https://egunawan.github.io/algebra/slides/notes/hw06iso1st.pdf
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