Contents

1	Review cosets	1
2	Related to Sec 3.3 normal subgroups	1
3	Related to Sec 3.4 direct products	2
4	Related to Sec 3.5 Quotient groups	2
5	Related to Sec 3.6 normalizers	2
6	Related to Sec 3.7 conjugation of an element, conjugacy classes	3
7	Related to center of a group	3
8	Related to Sec 4.1 Homomorphisms and 4.2 Kernels	4
Q	Related to Sec 4.3 First Isomorphism Theorem	1

Study Suggestion: Pick a few questions from each section that look the most challenging.

1 Review cosets

- 1. (a) Let H be a subgroup of a group G, and let $x \in G$. Define a bijective map f from H to xH.
 - (b) Show that this map is surjective.
 - (c) Suppose G is a non-abelian group of order 1000 and H is a subgroup of order 20. Let x be an element of G which is not in H. (i) How many elements are in the left coset xH? (ii) How many elements are in the right coset Hx? How many left cosets of H are there?

2 Related to Sec 3.3 normal subgroups

Theorem 1 (Theorem 3 from Slides 3.3). Let H be a subgroup of G. Then the following are all equivalent.

- (i) gH = Hg for all $g \in G$; ("left cosets are right cosets");
- (ii) $gHg^{-1} = H$ for all $g \in G$; ("only one conjugate subgroup")
- (iii) $ghg^{-1} \in H$ for all $h \in H, g \in G$; ("closed under conjugation").
- (iv) The subgroup H is called *normal* in G.
- 2. (a) Consider the subgroup $H = \{(1), (1, 2)\}$ of S_3 . Is H normal?
 - (b) Consider the subgroup $J = \{(1), (123), (132)\}$ of S_3 . Is J normal?
 - (c) Consider the subgroup $H = \langle (1234) \rangle$ of S_4 . Is H normal?
 - (d) Let n > 2. Is A_n a normal subgroup of S_n ?
 - (e) Consider a mystery subgroup K of $\mathbb{Z}_5 \times \mathbb{Z}_8$. Is K normal?
 - (f) Prove or disprove (with a counterexample): If $K \lhd H \lhd G$, then $K \lhd G$.
- 3. Let H be a subgroup of G. Given two fixed elements $a, b \in G$, define the sets

 $aHbH := \{ah_1bh_2 \mid h_1, h_2 \in H\}$ and $abH := \{abh \mid h \in H\}.$

- (a) Prove that if H is normal then $aHbH \subset abH$.
- (b) Prove that the statement is false if we remove the "normal" assumption. That is, give a specific G and H and $a, b \in G$ such that aHbH is not a subset of abH.
- (c) In class, we proved that multiplication of cosets of N is well-defined if N is a normal subgroup. Give an example where "multiplication" of cosets is not well-defined. That is, give a group G and a subgroup H where $a_1H = a_2H$ and $b_1H = b_2H$ but $a_1b_1H \neq a_2b_2H$.
- (d) Prove that if aH = bH then $a^{-1}b \in H$. (Use only definition of left coset and the fact that G is a group. Do not "multiply" both sides by $a^{-1}H$.)

3 Related to Sec 3.4 direct products

4. Give two groups A and B, what is the definition of $A \times B$? What is the binary operation on $A \times B$? What is the identity element of $A \times B$?

If $(a, b) \in A \times B$, what is the inverse $(a, b)^{-1}$ equal to?

If none of A and B is the trivial group, then $A \times B$ is guaranteed to have at least four normal subgroups. What are those four subgroups?

- 5. (a) True or false? The order of the group D_n is the same as the order of the group $C_2 \times C_n$.
 - (b) True or false? The group D_n is isomorphic to the group $C_2 \times C_n$.
 - (c) True or false? The group C_{14} is isomorphic to the group $C_2 \times C_7$.
 - (d) True or false? The group \mathbb{Z}_{16} is isomorphic to the group $\mathbb{Z}_4 \times \mathbb{Z}_4$.
 - (e) Is \mathbb{Z}_{12} isomorphic to $\mathbb{Z}_2 \times Z_6$?
 - (f) Write \mathbb{Z}_{12} as a nontrivial direct product.
 - (g) i. Write down all the subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3$.

ii. Use your answer to show that $\mathbb{Z}_3 \times \mathbb{Z}_3$ is not the same group as \mathbb{Z}_9 .

4 Related to Sec 3.5 Quotient groups

6. Let H be a subgroup of G.

- (a) What does the notation G/H mean?
- (b) When does the quotient G/H form a group?
- (c) If G/N is a quotient group, what is the binary operation of the quotient group G/N?
- (d) Consider the symmetric group S_3 and a subgroup $H := \langle (1 \ 2) \rangle$. Is $S_3/\langle (1 \ 2) \rangle$ a quotient group? Prove your answer. If it is a quotient group, what is it isomorphic to?
- (e) Consider the symmetric group S_3 and a subgroup $J := \langle (1 \ 2 \ 3) \rangle$. Is S_3/J a quotient group? Prove your answer. If it is a quotient group, what is it isomorphic to?
- (f) Consider the subgroup $H = \langle (1234) \rangle$ of S_4 . Is S_4/H a quotient group? Prove your answer. If it is a quotient group, what is it isomorphic to?
- (g) Consider the symmetric group S_4 and a subgroup $J := \langle (1 \ 2 \ 3) \rangle$. Is S_4/J a quotient group? Prove your answer. If it is a quotient group, what is it isomorphic to?
- 7. (a) List all normal subgroups N of D_4 .
 - (b) For each N above, what familiar group is D_4/N isomorphic to?

5 Related to Sec 3.6 normalizers

Definition 1. The set of elements in G that vote in favor of H's normality is called the *normalizer of* H in G, denoted $N_G(H)$. That is,

$$N_G(H) = \{g \in G : gH = Hg\} = \{g \in G : gHg^{-1} = H\}$$

What is the smallest that $N_G(H)$ can be?

What is the largest it can be?

When does the latter happens?

8. Let G be the group whose Cayley diagram is shown below, and suppose e is the identity element. Consider the subgroups $A = \langle a \rangle = \{a, b, c, d, e\}$ and $J = \langle j \rangle = \{e, j, o, t\}$.

Carry out the following steps for both of the subgroups A and J. List the cosets element-wise.

- (a) Write G as a disjoint union of the subgroup's left cosets.
- (b) Write G as a disjoint union of the subgroup's right cosets.
- (c) Use your coset computation to immediately compute the normalizer of the subgroup. Based on the computation for the normalizer, what you can say about this subgroup?
- (d) If G/A is a group, perform the quotient process and draw the resulting Cayley diagram for G/A. If G/J is a group, perform the quotient process and draw the resulting Cayley diagram for G/J.

6 Related to Sec 3.7 conjugation of an element, conjugacy classes

Let G be a group and $x \in G$. Review the definition of $cl_G(x)$.

- 9. (a) Prove that two permutations $x, y \in S_n$ are conjugate if and only if they have the same cycle type.
 - (b) Prove that (12) and (14) in S_6 are conjugate by finding a permutation $p \in S_6$ such that $p^{-1}(12)p = (14)$.
 - (c) List all permutations in S_4 which are conjugate to (1234). Use the fact from part (a).
- 10. Let G be a group and let Z be the set $\{z \in G \mid gz = zg \text{ for all } g \in G\}$. Prove that $cl_G(x) = \{x\}$ if and only if $x \in Z$.
- 11. Suppose N is a normal subgroup of G. Prove that if $x \in N$, then $cl_G(x) \subset N$. (This means that every normal subgroup is the union of a collection of conjugacy classes).

7 Related to center of a group

The *center* of a group G is the set

$$Z(G) = \{z \in G \mid gz = zg, \forall g \in G\} = \{z \in G \mid gzg^{-1} = z, \forall g \in G\}.$$

- a. Prove that Z(G) is normal in G by showing $ghg^{-1} \in H$ for all $h \in H, g \in G$; ("closed under conjugation").
- b. Compute the center of the following groups: C_6 , D_4 , D_5 , D_6 , D_7 , D_n .
- c. Compute the center of Q_8 .

Recall that the elements of the Quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ are governed by the rules $i^2 = j^2 = k^2 = -1$, ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j.

- d. Consider the group A_n of even permutations, where n > 3. Prove that (1 2 3) is not in the center of A_n by producing another even permutation which does not commute with (1 2 3).
- e. Consider the group A_n of even permutations, where n > 3. Prove that $(1 \ 2)(3 \ 4)$ is not in the center of A_n .
- f. Compute the center of A_4

Hint: A non-identity permutation in S_4 is an even permutation if and only of its cycle notation is of the form (ab)(cd) or (abc). (Make sure you can prove this!)

Do (ab)(cd) and (abc) commute?

- g. Compute the center of S_4 . Hint: Every non-identity permutation in S_4 can be written in the form (ab), (abc), (abcd), and (ab)(cd). Can you find a permutation that does not commute with (ab)? With (abcd)?
- h. Compute the center of S_2 .
- i. Compute the center of A_3 .
- j. Prove or disprove that "the center of a direct product is the direct product of the centers", that is, $Z(A \times B) = Z(A) \times Z(B)$.

k. Use what you've done so far to compute the center of $D_n \times Q_8$. Draw the Cayley diagram for $Z(D_n \times Q_8)$.

8 Related to Sec 4.1 Homomorphisms and 4.2 Kernels

Proposition 1. Let $f: G_1 \to G_2$ be a homomorphism of groups. Then

- (a) If e_1 is the identity of G_1 , then $f(e_1)$ is the identity of G_2 .
- (b) For any element $g \in G_1$, $f(g^{-1}) = [f(g)]^{-1}$.
- (c) If H_1 is a subgroup of G_1 , then $f(H_1)$ is a subgroup of G_2 .
- (d) (i) If H_2 is a subgroup of G_2 , then $f^{-1}(H_2) = \{g \in G_1 : f(g) \in H_2\}$ is a subgroup of G_1 . (ii) Furthermore, if H_2 is normal in G_2 , then $f^{-1}(H_2)$ is normal in G_1 .
- 12. Prove all parts of Proposition 1.
- 13. (a) Let $f: G_1 \to G_2$ be a homomorphism of groups. Prove that the kernel of f is a normal subgroup of G_1 .
 - (b) Let $f: G \to H$ be a group homomorphism. Show that f is injective if and only if the ker(f) is the trivial group $\{1_G\}$.
- 14. (a) Let $f: G_1 \to G_2$ be a *surjective* homomorphism. Prove that, if $N \triangleleft G_1$, then f(N) is normal in G_2 .
 - (b) If $f: G_1 \to G_2$ is a homomorphism and N is a normal subgroup of G_1 , is it possible that f(N) is not normal in G_2 ? If so, give a counterexample.
- 15. I. Let $\phi : (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ be the map given by $\phi(n) = 7n$ for $n \in \mathbb{Z}$. Find the kernel and the image of ϕ .
 - II. Consider the group homomorphism $f: (\mathbb{R},+) \to (\mathbb{C}^*, \times)$ defined by

$$f(\theta) = \cos \theta + i \sin \theta.$$

What is the kernel of f?

Give a bijective group homomorphism from the kernel of f to $(\mathbb{Z}, +)$. Prove that this map is a group homomorphism.

III. Let G be a group and let g be some element in G. Consider the group homomorphism from \mathbb{Z} to G given by $f(n) = g^n$. (a) If the order of g is infinite, what is the kernel of f? Justify.

- (b) If the order of g is finite, say k, what is the kernel of f? Justify.
- 16. (a) Is there a homomorphism $f: (\mathbb{Z}_3, +) \to (\mathbb{Z}_4, +)$ where f(1) = 1? Prove your answer.
 - (b) True or false? Given two groups A and B, there exists a homomorphism from A to B. Prove your answer.
- 17. (a) Determine all possible homomorphisms from $(\mathbb{Z}_7, +) \to (\mathbb{Z}_{12}, +)$. Prove your answer.
- (b) Let $n \ge 2$. Determine all possible homomorphisms $(\mathbb{Z}_n, +) \to (\mathbb{Z}, +)$. Prove your answer.
- 18. Given a homomorphism $f: G \to H$ define a relation \sim on G by $a \sim b$ if $\phi(a) = \phi(b)$ for $a, b \in G$.
 - i. Show that this relation is an equivalence relation.
 - ii. Describe the equivalence classes. How many classes are there?

9 Related to Sec 4.3 First Isomorphism Theorem

- 19. (a) Consider the symmetric group S_3 and a (normal) subgroup $J := \langle (1 \ 2 \ 3) \rangle$. What familiar group is the quotient group S_3/J isomorphic to? Use the Fundamental Theorem of Homomorphism (1st Isomorphism Theorem) to formally prove your answer.
 - (b) Use the Fundamental Theorem of Homomorphism (1st Isomorphism Theorem) to formally prove that $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to the cyclic group of order n, that is, \mathbb{Z}_n .