1. (a) Let n > 1. What is the definition of an *even permutation* in S_n ? (Use the definition you learned in class)

Solution: An even permutation in S_n can be written as the product of an even number of transpositions (2-cycles).

(b) For each permutation of S_6 below (written in cycle notation), draw a heart around it if it's an even permutation.

(12) (123) (123)(45) (123)(456) (1234) (12)(34) (12)(34)(56) (1234)(56)

 ${\bf Solution:} \ {\rm odd}, \ {\rm even}, \ {\rm odd}, \ {\rm even}, \ {\rm odd}, \ {\rm even}, \ {\rm odd}, \ {\rm even}$

(c) Let n > 1. Let A_n denote the set of even permutations in S_n . Circle the correct statement, and cross out the false statement: The left coset $(12)A_n$ is equal to $A_n /$ The left coset $(12)A_n$ is not equal to A_n . Prove the correct statement.

Solution: The left coset $(12)A_n$ is not equal to A_n . For example, the identity element (1) is in A_n , so (12) = (1, 2)(1) is in the left coset $(12)A_n$, but (12) is not an even permutation, so $(12) \notin A_n$. Remark: In fact, the left coset $(12)A_n$ is the set of all odd permutations in S_n .

(d) List all permutations in A_3 and S_3 .

Solution: $A_3 = \{(), (123), (132)\}.$ $S_3 = \{(), (123), (132), (12), (23), (13)\}$

(e) Pick a minimal generating set for A_3 , and a minimal generating set for S_3 . Hint: You have two choices for A_3 and 9 choices for S_3 .

Solution: For A_3 , you can pick either $\{(123)\}$ or $\{(132)\}$. For S_3 , you have 9 choices (since S_3 has the same structure as D_3 from homework 1 and 2). You can pick a set with two generators (both of order 2), like $\{(12), (23)\}$. You can also pick the set where one generator has order 2 and the other has order 3, like $\{(12), (123)\}$

(f) (i) Draw a Cayley diagram for these minimal generating sets - make sure to label each node with the corresponding permutations. If you have more than one generator, distinguish the different arrows by label or color/dashes. (ii) Write down the group presentations for these Cayley diagram.

Solution: For A_3 , a possible group presentation is $\langle x \mid x^3 = e \rangle$. The Cayley diagram looks like the Cayley diagram of a finite Cylic group: egunawan.github.io/algebra/slides/sec2p1.pdf For S_3 , if both generators are of order 2, some possible group presentations are $\langle x, y \mid x^2 = y^2 = e, xyx = yxy \rangle$, $\langle x, y \mid x^2 = y^2 = (xy)^3 = e \rangle$. The abstract Cayley diagram would look like For S_3 , if one generator has order 2 and the other has order 3, some possible group presentations are $\langle r, f | r^3 = f^2 r f r f = e \rangle$. The Cayley diagram would look like the D_3 Cayley diagram in Slides 2.2: egunawan.github.io/algebra/slides/sec2p2.pdf

(g) If G is a finite group, the *index* [G:H] of a subgroup $H \leq G$ is [give a definition, not a theorem!] ...

Solution: ... the number of left cosets of H.

(h) What is the index $[S_n : A_n]$ of the subgroup $A_n \leq S_n$? Justify this - you can use theorems you have seen in class (without reproving it here).

Solution: Answer = 2.

We have seen that there is a bijection between A_n and the set of odd permutations, so the number of A_n is half of $|S_n| = n!$. By the corollary of Lagrange's theorem, the number of left cosets of A_n is $|S_n|/|A_n|$.

(i) Let $G = \langle (1234567) \rangle$, the group generated by the permutation (1234567), written in cycle notation. Prove that the only subgroups of G are the trivial group $\{()\}$ and G itself.

Solution: Proof: First, note that $(1234567)^7 = ()$ and $(1234567)^k \neq ()$ for any positive integer k less than 7, so the order of the permutation (1234567) is 7. Hence G has order 7. By Lagrange's theorem, the order of any subgroup of G must be divisible by 7, so any subgroup of G has order 1 or 7.

- 2. For each statement below, determine if it is true or false. Prove your answer.
 - (a) If G is a non-abelian group, it must have a proper subgroup which is non-abelian.

Solution: False. The group S_3 is non abelian (for example $(12)(23) \neq (23)(12)$) but all its proper subgroups have order 1, 2, and 3, and you've see that all such groups are cyclic (hence abelian).

The group D_4 also works. All its proper subgroups have order 1, 2, and 4, and you've seen that all such groups are abelian.

(b) If the order of a group G is infinite (that is, if there are infinitely many elements in G), then the order of every $x \in G$ is also infinite. Recall that the order of x is the size of its orbit $\langle x \rangle$.

Solution: False. Consider the infinite Dihedral group $D_{\infty} = \langle r, f \mid f^2 = e, rfef = e \rangle$. There are infinitely many elements in D_{∞} but the order of the element f is 2.

(c) There exists a dihedral group which is not abelian.

Solution: True. Proof: The dihedral group $D_2 = \langle r, f \mid r^2 = e, f^2 = e, rfrf = e \rangle = \langle r, f \mid r^2 = e, f^2 = e, rf = fr \rangle$ is abelian.

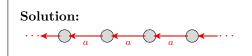
- 3. For each part below, compute the orbit of the element in the group. Your answer should be a list of elements from the group that ends with the identity.
 - (a) The element r^2 in the group D_{10}

Solution: $\{r^2, r^4, r^6, r^8, e\}$

(b) The element 12 in the group $C_{42} = \mathbb{Z}/42$

Solution: {12, 24, 36, 6, 18, 30, 0}.

- 4. Recall that \mathbb{Z} is a group under the operation of ordinary addition.
 - (a) Create a Cayley diagram for it.



(b) Is it abelian?

Solution: Yes, it is a cyclic group, since it can be generated by the element 1 or -1.

(c) Give a minimal generating set consisting of more than one element.

Solution: For example, $\{2,3\}$ or $\{7,12\}$ would work.

5. (a) Find a group (of order larger than 1) such that there is only one solution to the equation $x^2 = e$, that is, the solution x = e, or explain why no such group exists.

Solution: Yes. For example, the cyclic group of order 3. You can observe this from the multiplication table.

(b) Find a group that has exactly two solutions to the equation $x^2 = e$, or explain why no such group exists.

Solution: The cyclic group of order 4, $\langle r \mid r^4 = e \rangle$. The two solutions are x = e and $x = r^2$.

(c) Find a group that has more than two solutions to the equation $x^2 = e$, or explain why no such group exists.

Solution: The rectangle puzzle (Klein-4 group) $\langle a, b \mid a^2 = b^2 = e, ab = ba \rangle$. There are four solutions, x = e, x = a, x = b, and x = ab. You can observe this from the multiplication table.

(d) There are two non-isomorphic groups of order 6. What are their names? Specify which, if any, are abelian.

Solution: One is non-abelian, the Dihedral group D_3 or the symmetric group S_3 . The other is the cyclic group C_6 , which is abelian.

- 6. Answer the following questions about permutations and the symmetric group.
 - (a) Write (1 2 3 4) as a product of *transpositions* (i.e., 2-cycles).

Solution: (12)(13)(14) = (23)(24)(12) = (34)(31)(23) = (14)(24)(34)

(b) What is the *inverse* of the element $(1\ 3\ 2\ 6)\ (4\ 5)$ in S_6 ?

Solution: (45)(1623)

(c) The *order* of an element $g \in G$ is defined to be ...

Solution: ... $|\langle g \rangle|$, the size of the orbit of g. Note that this (if finite) is also the minimum k > 0 such that $g^k = e$.

(d) What is the order of the element $(1\ 2\ 3\ 6)\ (4\ 5\ 7)$ in S_7 ?

Solution: The order is 12 because $[(1\ 2\ 3\ 6)\ (4\ 5\ 7)]^i \neq id$ for i = 1, 2, ..., 11 and $[(1\ 2\ 3\ 6)\ (4\ 5\ 7)]^{12} = id$

(e) Find an element of order 20 in S_9 .

Solution: (1 2 3 4 5) (6 7 8 9)