Day 7 Abstract Algebra Notes

Ch 8 External direct products

New groups from old

Direct product of groups (G, *) and (H, ·) is

a new group w/

set: $G \times H = \{ (g,h) : g \in G, h \in H \}$ Cortestan product

binary operation: $(g,h) * (g',h') = (g * g', h \cdot h')$

Identity: (tg, eH)

Inverse of (g,h) is (g',h')

Ex Write the Cayley table for Z2 × Z3 =

 $\{(0,0),(0,1),(0,2)$

(1,0), (1,1), (1,2) }

	(0,0)	(0,1)	(0,2)	(1,0)	(1,1)	(1,2)
(0,0)	(0,0)	(0,1)	(0,2)	(1,0)	(1,1)	(1,2)
(١, ٥)	(0,1)	(0,2)	(0,0)	(1,1)	(1,2)	(0,1)
(0,2)	(0,2)	(0,0)	(o, 1)	(1, 2)	(1, 0)	(I,I)
(1,0)	(1,0)	(1,1)	(1,2)	(0,0)	(0, 1)	(0, 2)
(1,1)	(1,1)	(1,2)	(1,0)	(0, 1)	(0, 2)	(0,0)
(1,2)	(1,2)	(1,0)	(1,1)	(0,2)	(0,0)	(91)

Cayley diagrams of direct products Let A, B be groups, and let ex & ex denote the identifies of A & B (respectively).

Given a Cayley diagram of group A wy generators $a_1, a_2, ..., a_k$ and a Cayley diagram of group B wy generators $b_1, b_2, ..., b_d$, we can construct a Cayley diagram for direct product $A \times B$:

Vertices: (a,b) for each $a \in A$, $b \in B$ (often arranged in a rectangular grid)

Cayley diagram for $7/3 \times 7/2 \text{ W/ generators}$ (0,1) and (1,0): $(0,0) \cdots (0,1) \cdots (1,1)$ $(1,0) \cdots (2,1)$

Prop If $H \leq A$ and $K \leq B$ then $H \times K$ is a subgroup of $A \times B$. $\underline{E} \times \mathbb{Z}_3 \times \{0\}$ is a subgroup of $\mathbb{Z}_3 \times \mathbb{Z}_2$ $\{0,2,4\} \times \{0,3\}$ is a subgroup of $\mathbb{Z}_6 \times \mathbb{Z}_6$

```
Exercise: Draw the Cayley diagram for
  * Z3 x Ze using ((1,1))
   * \mathbb{Z}_{4} \times \mathbb{Z}_{2} using S = \{(1,0), (0,1)\}
  * Can you find an eit a s.t Z/4xZ2= (9)?
 (19158 Thm 8.1 Order of an elt in a direct product)
Theorem If G1, Gz, ..., Gn are finite groups,
 then the order of (g1, g2, ...,gn) & G1 × G2 × ... × Gn is
       dcm ( 191, 1921, ..., 19n1)
Proof (for n=2)
   Let e1, e2 denote the identities of G1, G2 (respectively)
    Let s = lcm ( |91 |, |921) , t = | (91,92) |
    Then (g_1, g_2)^S = (g_1 ... g_1, g_2 ... g_2) by def of external direct product
                      = (e1, e2) since s is a multiple
of |g1| and of |g2|
                       \left| \left( 9_{1}, 9_{2} \right) \right| \leq s.
     To show the other inequality,
        note that (g_1^t, g_2^t) = (g_1, g_2)^t by def of direct product
                                   = (e_1, e_2) since t = |(g_1, g_2)|
        So git = e1 and gt = e2
         So t is a multiple of 1911 and of 1921.
         lcm(|g_1|, |g_2|) \leq t
```

```
Ex How many elts of order 5 are there in \mathbb{Z}_{25} \times \mathbb{Z}_{5}?

Sol: By Thm 8.1, (a,b) \in \mathbb{Z}_{25} \times \mathbb{Z}_{5} has order 5

iff \operatorname{lcm}(|a|,|b|).

So \operatorname{Case} 1 |a| = 5 and |b| = 1 or 5,

OR \operatorname{Case} 2 |a| = 1 and |b| = 5.

Case 1 |a| = 5: 5, 10, 15, 20 (four possibilities)

|b| = 1 \text{ or } 5: all elts of \mathbb{Z}_{5} (five possibilities)

Case 2 |a| = 1: only the identity (one possibility)

|b| = 5: all elts of \mathbb{Z}_{5} except for 0
```

So $\mathbb{Z}_{25} \times \mathbb{Z}_5$ has 20 + 4 = 24 elss of order 5

(four possibilities)

Finite & finitely generated abelian groups

Note:
$$\mathbb{Z}_{6} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2}$$
 but $\mathbb{Z}_{8} \not\cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$

or $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

because \mathbb{Z}_{8} has

an elt of order 8 , the number 1 ,

but every elt \times in

 $\mathbb{Z}_{2} \times \mathbb{Z}_{4} & (\mathbb{Z}_{2})^{3}$
 $\mathbb{Z}_{2} \times \mathbb{Z}_{4} & (\mathbb{Z}_{2})^{3}$
 $\mathbb{Z}_{3} \times \mathbb{Z}_{4} & (\mathbb{Z}_{2})^{3}$
 $\mathbb{Z}_{4} \times \mathbb{Z}_{4} & (\mathbb{Z}_{4})^{3}$

(Thm 8.2 Criterion for GxH to be cyclic, pg 159)

Zm × Zn is cyclic iff m and n are relatively prime

(proof below)

Prove backward direction

(If
$$gcd(n, m) = 1$$
 then $\mathbb{Z}_{nm} \cong \mathbb{Z}_n \times \mathbb{Z}_m$)

Suppose gcd(n,m)=1.

Claim: $(1,1) \in \mathbb{Z}_n \times \mathbb{Z}_m$ has order nm.

Let k be the order of $(1,1) \in \mathbb{Z}_n \times \mathbb{Z}_m$ Then (1,1) + (1,1) + --- + (1,1) = (k,k) = 0

This means n divides k and m divides k. So k = lcm(n, m). But since gcd(n, m) = 1, lcm(n, m) = nm.

Since we know (from def of direct products) that the order of $\mathbb{Z}_n \times \mathbb{Z}_m$ is nm, $\langle (I,I) \rangle$ must generate $\mathbb{Z}_n \times \mathbb{Z}_m$.

So Znx Zm is a cyclic group of order nm, thus it is isomorphic to Znm. Prove forward direction (If $\mathbb{Z}_{nm} \cong \mathbb{Z}_n \times \mathbb{Z}_m$ then $\gcd(n,m)=1$)

Pf Suppose Zenm = Zen x Zen.

Then Znx Zm has an elt (a,b) of order nm } (*) (Since 1 & Znm has order nm).

For convenience, switch to "multiplicative notation".

Let Cn denote a cyclic group of order n, and let Cm denote a cyclic group of order m.

Let e, and ez denote the identities of Cn and Cm, resp.

Let $a \in Cn$ and $b \in Cm$ such that $Cn = \langle a \rangle$ and $Cm = \langle b \rangle$

Then $a^n = e_1$ and if o(j < n + len) $a^j \neq e_1$ $b^m = e_2$ and if o(j < m + len) $b^j \neq e_2$

Then the order of (a,b) must be the smallest multiple of n and of m, lcm(n,m).

Since (a,b) has order non (from (x)), lcm(n,m) = nm. So the greatest common divisor of n and m is 1.

Ch 11 Fundamental Thm of Finite Abelian Groups

(Thm 11.1)

Every finite abelian group A is isomorphic to a direct product of cyclic groups. i.e. $A \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \dots \times \mathbb{Z}_{n_n}$ where each no is a prime power, Tre- N= P; di where P- is prime, di EZ>0

Ex Up to isomorphism, there are 6 abelian groups of order $200 = 2^3$. 5^2

By Prime powers 2.2.2.5.5
By divisors (Applying Thm 8.2) $\mathbb{Z}_{200} = \mathbb{Z}_8 \times \mathbb{Z}_{25}$ $\mathbb{Z}_{21} = \mathbb{Z}_{22} = \mathbb{Z}_{200}$ $\mathbb{Z}_{200} \times \mathbb{Z}_{200} = \mathbb{Z}_{200} \times \mathbb{Z}_{200}$ Thm 8.2 $\mathbb{Z}_{200} \times \mathbb{Z}_{200} \times \mathbb{Z}_{200}$

Z, ×Z, ×Z, ×Z, ×Z25) 2/2/2/55 750 × Z2 × Z,

Z40×Z5 ≈ Z8 ×Z5×Z5) 222 [5 | 5 Z 40 ×Z5 Z, ×Z4 Z5 ×Z5 2 2 22 5 5 Z20 × Z10

> $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$ 2|2|2|5|5Z10 ×Z10 ×Z2

Classification of finitely generated abelian group Every finitely generated abelian group A is isomorphic to a direct product of cyclic groups, i.e $A \cong \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z} \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_5}$

Nonabelian groups are much more mysterious -end of PDF -