Abstract Algebra Notes Day 5 Tue, Oct 7 2025

Ch 6 Isomorphisms part I

Starting 7: 50pm

Thm 6.2 (Properties of isomorphisms acting on elts)

Let $\varphi: G \to H$ be a isomomorphism of groups.

- (1) P Sends eg to eH
- To each $x \in G$, $\varphi(x^k) = (\varphi(x))^k$, in particular: For each $x \in G$, $\varphi(x^{-1}) = (\varphi(x))^{-1}$
- 3 $G = \langle a \rangle$ if and only if $H = \langle \varphi(a) \rangle$
- (4) |a| = |P(a)| for all a & G (isomorphisms preserve orders)

Proof 1) See Day 4 notes

(2) $e_{\#} = \varphi(e_{G})$ $= \varphi(x x^{-1})$ $= \varphi(x) \varphi(x^{-1})$

Multiply both sides on the left by (Q(x)) :

 $\left[\left(\varphi(x) \right)^{-1} e_{H} = \left(\varphi(x) \right)^{-1} \varphi(x) \varphi(x^{-1})$

 $\left[\phi(x) \right]^{-1} = \phi(x^{-1})$

 $(3) (\Rightarrow) \quad \text{Suppose } G = \langle a \rangle,$ $\quad \text{Then } [\varphi(a)]^k \in H \quad \text{by closure property of group } H,$ $\quad \text{so } \langle \varphi(a) \rangle \subset H.$ $\quad \text{Because } \varphi \text{ is onto, } \text{for any elt } b \in H,$ $\quad \text{There is an elt } x \in G \text{ such that } \varphi(x) = b.$ $\quad \text{Note } x = ak \text{ for some } k \text{ since } G = \langle a \rangle.$ $\quad \text{Thus } b = \varphi(x) = \varphi(a^k) - \{\varphi(a)\}^k$ $\quad \text{part } (2)$ $\quad \text{So } b \in \langle \varphi(a) \rangle \text{ for every } b \in H,$ $\quad \text{so } H = \langle \varphi(a) \rangle$

(\Leftarrow) Suppose $H = \langle \varphi(a) \rangle$. $\langle a \rangle \subseteq G$ by def. To show $G \subseteq \langle a \rangle$, let $x \in G$. Then $\varphi(x) \in H = \langle \varphi(a) \rangle$ \uparrow since H is the codomain So we have $\varphi(x) = (\varphi(a))^k$ for some integer k \downarrow g def of $\langle \varphi(a) \rangle$.

> So $\varphi(x) = (\varphi(a))^k = \varphi(a^k)$ Since φ is injective, $x = a^k$ Hence $x \in \langle a \rangle$. So $G = \langle a \rangle$.

P Follows from the fact that $Q(a^n) = (QG_0)^n$ and $Q(G_0) = G_{H_0}$

- Thm 6.3 (Properties of isomorphisms acting on groups)

 Let $\varphi: G \to H$ be an isomorphism.
 - ① The inverse map $\phi^l: H \rightarrow G$ is an isomorphism
 - 2 G is abelian iff H is abelian
 - 3 G is cyclic iff H is cyclic
 - 4) If k is a subgroup of G then the image $\Phi(k)$ is a subgroup of H.
 - (5) If J is a subgroup of H then the preimage $\Phi'(J)$ is a subgroup of G.
 - Ex. Z12 isn't isomorphic to D6 or A4

 since Z12 is abelian but the others aren't
 - . D6 has an elt of order 6: the rotation by $\frac{2\pi}{6}$
 - · A4 consists of even permutations in Sq:

 (i), 3-cycles, and elts of the form (ab)(cd).

 which have order 1, 3, and 2 (respectively)

 S. D6 and A4 are not isomorphic.

Prop Let G, H, K be groups.

1)
$$id_G: G \longrightarrow G$$
 is an isomorphism $\times \longmapsto \times$

Pf: idg a homomorphism: idg(ab)=ab=idg(a) idg(b). T idg a bijection.

(2) If $\varphi: G \to H$ is an isomorphism, then the inverse bijection φ^1 is also an isomorphism.

Pf The inverse bijection ϕ^{-1} is a bijection.

Given $C, d \in H$, C = Q(a) and d = Q(b) for some $a, b \in G$ since Q is a bijection.

Then $\varphi(ab) = \varphi(a) \varphi(b)$ since φ is a homomorphism = C d

So $\varphi'(cd) = ab = \varphi'(c) \varphi'(d)$, and thus φ' is a homomorphism.

The composition of two isomorphisms is also an isomorphism) If $\varphi: G \to H$ and $\psi: H \to K$ are isomorphisms, then $\psi \circ \varphi: G \to K$ is an isomorphism.

Proof Composition of bijections is a bijection.

For $a,b \in G$, $\gamma(\varphi(ab)) = \gamma(\varphi(a)\varphi(b))$ since φ is a homomorphism $= \gamma(\varphi(a)) \gamma(\varphi(b))$ since γ is a homomorphism.

Remark The set $Aut(G) = \{automorphisms of G\}$ forms a group under composition. It's called the automorphism group of G.

```
Def Let G be a group, and let a & G.
            The function \phi_a:G\longrightarrow G
             defined by X > axa"
             is called the inner automorphism of G induced by a
 Exercise: prove that each $p$ is an automorphism of 6.
   (HW04)
Rem Recall from HW 2 that a Ha' is a subgroup
       for any a \in G and subgroup H of G.

\phi_a : H \longrightarrow aHa^{-1}
                         h \longrightarrow aha^{-1}
                     gives an isomorphism from H onto a Ha-1
Ex Consider G= S100
          H = \langle (1234), (13) \rangle = \{ Id, (1234), (13)(24), (4321), (13), (12)(34), (24), (14)(23) \}
                                                     (13)(1234)
      (12) (24) (13)(24) (13)(24) (13)(24) (23)(14)
(14) (23) (24) (23)(14)
(14) (23) (24) (23)(14)
(14) (23) (24) (23)(14)
(14) (23) (24) (23)(14)
(14) (23) (24) (23)(14)
(14) (23) (24) (23)(14)
(14) (23) (24) (23)(14)
     let a = (12)
          \alpha H_{\alpha}^{-1} = \langle (12)(1234)(12), (12)(13)(12) \rangle = \langle (2134), (23) \rangle
   Fact: T(1234...k) T' = (T(1)) T(2)... T(k)
  Proof See HW 05
```

Hw 05

Consider
$$G = S_{100}$$

Let $H = \langle (123), (12) \rangle$.

(i) Draw the Cayley diag

(12) e

that:
The Cayley diagram
for this is given at the beginning of

Day 4 notes

Apply the isomorphism

Pa: H -> affai for a= (456)

Draw Cayley diagram affai

(see ex for clas)

My Same

(ii) Apply the isomorphism

Pa: H > a Ha' for a = (14)