Document last updated Tue, Sep 23, 2025

Abstract Algebra Notes

Day 3 Tue, 9/23/25

Outline * Break before 8 pm

- Present HW

- Quiz 2

- Lecture: Ch 4 Cyclic groups

Ch 5 Permutation groups

- Group activity: problems for next week's HW& quiz

TODO Fri: TP 3 Overleaf

Next Tue: HW03 Due in class

Study for Quiz 3: Quiz @ Start of class

Ch 4 Cyclic groups

Thm 4.1 Criterion for $a^i = a^j$

let G be a group, and let a & G.

1. If a has infinite order,

$$a^{i} = a^{j}$$
 iff $i = j$

2. If a has finite order n, then:

(i)
$$\langle a \rangle = \{ a, a^2, ..., a^{n-1}, e \}$$

Proof 1. If a has infinite order, then a" = for all nEN.

$$a^{\bar{i}} = aj$$
 iff $a^{\bar{i}-\bar{j}} = e$ iff $i-\bar{j} = 0$

- 2. Assume |a| = n.
- (i) We'll prove <a> = { e, a, a2, ..., an-1}.

We have $\{e, a, a^2, ..., a^{n-1}\} \subset \langle a \rangle$ by definition of $\langle a \rangle$.

To prove
$$\langle a \rangle \subset \{e, a, ..., a^{n-1}\}$$
,

suppose $a^k \in \langle a \rangle$

There exists g, r such that $\begin{cases}
This is called the \\
division algorithm
\end{cases}$

Then
$$a^{k} = a^{2^{n+r}} = a^{q^{n}} a^{r} = (a^{n})^{q} a^{r} = e a^{r} = a^{r}$$

Since 0 \(\rightarrow \rightarrow n_1 \) this shows at \(\left(\e, a, ..., a^{n-1} \right) \).

So the two sets are equal.

See proof of (2) (ii) in the book.

Cayley graph of $\langle a \rangle$ if |a| = 6 $a^{6} = a^{\circ} = a^{6} = ...$ $a^{5} = a^{7} = ...$ $a^{5} = a^{7} = ...$

$$a^{2} = a^{8} = ...$$
 $a^{4} = a^{10} = ...$
 $a^{4} = a^{10} = ...$
 $a^{3} = a^{9} = ...$

Cayley graph of Z6=(1)

Cayley graph of (a) if a has infinite order

 $\cdots \leftarrow a^2 \stackrel{a}{\leftarrow} a \stackrel{a}{\leftarrow} e \stackrel{a}{\leftarrow} a^{-1} \leftarrow \cdots$

Cayley graph of Z= <1>

... 2←1←0←-2...

upshot of Thm 4.1: No matter what the group G is, or how the elt a is chosen, multiplication in <a> ...

- * works the same as addition in \mathbb{Z}_n if |a|=n:

 If $i+j\equiv k \mod n$ then $a^{\bar{i}}a^{\bar{j}}=a^k$
- * works the same as addition in \mathbb{Z} if a has infinite order: $a^{\dagger}a\bar{J}=a^{\dagger}t\bar{J}$ (and no modular arithmetic is done)

Corollary Let $a \in G$ be an elt of order n. Then $|a| = |\langle a \rangle|$

l.e., the order of a group element a is equal to the number of elts in the cyclic subgroup (a)

Jenerated by a.

Proof Part (2)(ii) of the above theorem says that $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$, so $|\langle a \rangle| = n$.

Corollary Let $a \in G$ be an elt of order n.

If $a^k = e$ then n divides k.

 $\frac{Proof}{}$ Since $a^k = e = a^o$, the above theorem tells us n divides k-D.

Thm 4.2 Let
$$a \in G$$
 be an elt of order n .
Let k be a positive integer. Then we have:
1. $\langle a^k \rangle = \langle a^{gcd}(n,k) \rangle$
Lexima 2. $|a^k| = \frac{n}{gcd(n,k)}$

$$\frac{E \times}{9cd(30, 17) = 1}, \quad \text{so} \quad \left\langle a^{17} \right\rangle = \left\langle a^{1} \right\rangle = \left\langle e, q, a^{2}, ..., a^{29} \right\rangle$$

$$and \quad \left| a^{17} \right| = \frac{30}{1} = 30$$

$$gcd(30, 18) = 6, \quad \text{so} \quad \left\langle a^{18} \right\rangle = \left\langle a^{6} \right\rangle = \left\{ e, a^{6}, a^{12}, a^{18}, a^{24} \right\}$$

$$and \quad \left| a^{18} \right| = \left| a^{6} \right| = \frac{30}{6} = 5$$

Cor An integer k in \mathbb{Z}_n is a generator of \mathbb{Z}_n if f gcd(n,k)=1

$$\frac{Ex}{Z} = \langle 1 \rangle = \langle 2 \rangle = \langle 3 \rangle = \langle 4 \rangle = \langle 5 \rangle = \langle 6 \rangle$$

$$Z_q = \langle 1 \rangle = \langle 2 \rangle = \langle 4 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 8 \rangle$$

Thm (1) Every subgroup of a cyclic group is cyclic. Thm 43 (2) Suppose $|\langle a \rangle| = n$.

- (i) The order of any subgroup of (a) is a divisor of n.
- (ii) For each positive divisor k of n, the group (a) has exactly one subgroup of order k: (are)

Proof of (1): (Extra)

Let $G=\langle x \rangle$ be a cyclic group W/ generator X. Suppose H is a subgroup of G.

Case 1: H is the trivial subgroup $\{e\}$. Then $H = \langle e \rangle$ is cyclic

Case 2: H is non trivial.

- · So H contains some elt g not the identity.
- · Then g = x" for some n ∈ Z=0
- Since a subgroup is closed under taking inverses, $g^{-1} = x^n$ must also be in H.
- · Since either n or -n is positive,

 H must contain some positive power of X.
- · Let m be the smallest positive integer such that $x^m \in H$. (Such an m exists by the Principle of Well-ordering.)

· Claim $H = \langle x^m \rangle$

Proof of Claim

- Since $x^m \in H$, we know $\langle x^m \rangle \leq H$ since by def $\langle x^m \rangle$ is the smallest subgroup of H containing x^m
- · Next, we will prove H < < xm>:

Let hEH. Since H ≤ G = (x), we have h= xk for some K ∈ Z

- * By the division algorithm, there are $q, r \in \mathbb{Z}$ with $0 \le r < m$ such that k = mq + r.
- Thus $h = x^k = x^m g + r = x^m g \times r$
- Multiply $x^k = x^m x^r$ on the left by $x^{-m} x^k = x^r$
- So $X^r = X^{-mq} X^k = (X^m)^{-q} X^k$ is in H, Since $X^k = h \in H$ (by assumption) and $X^m \in H$ (by M).
- . We said earlier that m is the smallest positive integer such that $x^m \in H$.
- · Since 0 ≤ r < m, we must have r=0.
- Thus k = mq, and $h = x^k = x^m l = (x^m)^l \in \langle x^m \rangle$.
- · This proves H < <xm>.

- the end of proof _

Cor For each positive divisor k of n,

the set $\langle \frac{n}{k} \rangle$ is the unique subgroup of \mathbb{Z}_n of order k.

These are the only subgroups of \mathbb{Z}_n .

Ch 5 Permutation groups

Notation: $[n] := \{1, 2, ..., n\}$

The symmetric group on n letters, denoted Sn, for convenience, the letters are 1,2,...,n

is the set of permutations on [n] under function composition.

bijections from [n] to itself

Motivation: Every finite group is "isomorphic to"

a subgroup of Sn (Cayley's Thm)

Notation: α in α can be written in two line notation $\alpha = \begin{bmatrix} 1 & 2 & 3 & u \\ \alpha(1) & \alpha(2) & \alpha(3) & \cdots & \alpha(n) \end{bmatrix}$

Ex $V = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{bmatrix}$, $V = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{bmatrix} \in S_5$

Read from right to left, like function composition:

Fact (Sn = n!

Prop A k-cycle in Sn has order k.

Therefore, | T | = k

Proof Let $\nabla = (a_1 a_2 \cdots a_k)$ be a k-cycle $a_1 a_2 \cdots a_k$ For $i \in [k-1]$, we have $\nabla^i(a_1) = a_{i+1} \neq a_1$ so $\nabla^i \neq 1d$ But $\nabla^k(a_1) = a_1$, $\nabla^k(a_2) = a_2$,..., $\nabla^k(a_k) = a_k$, so $\nabla^k = | \mathcal{J}|$.

<u>Prop</u> The inverse of a k-cycle $T = (a_1 a_2 ... a_k)$ is the (opposite) K-cycle (ak ... a2a1)

$$Ex$$
 $T = (1265)$ $T = (1562)$ $T = 1d$

$$\begin{array}{cccc}
1 & \rightarrow 2 & & \downarrow \leftarrow 2 \\
\uparrow & \downarrow & & \uparrow \\
5 & \leftarrow 6 & & 5 & \rightarrow 6
\end{array}$$

Prop Disjoint cycles commute (so the order of the disjoint cycles doesn't matter) (1456)(237) = (237)(1456)EX

Thm Every TES is the product of disjoint cycles.

Elements of S3: 1d, (12), (23), (13), (123), (132) EX (1)(2)(3), (12)(3), (1)(23), (13)(2), (123), (132)

Ex The elts of Sq, by cycle type:

cycle type	Ty pes	permutations	Count
(1,1,1,1)		[d= (1)(2)(3)(4)	1
(2,1,1)	2-cycles or "transpositions"	(12), (13),, (34)	6
(3,1)	3-cycles	(123),, (243)	8
(4)	4-cycles	(1234),, (1432)	6
(2,2)	(2,2)-cycles	(12)(34), (13)(24),(14)(23)	

Prop The order of T is the least common multiple of the cycle lengths.

Proof Write $T = T_1 Y_2 ... Y_m$ as disjoint cycles $T_1, T_2, ..., T_m$.

Then $\nabla^k = (\Upsilon_1 \Upsilon_2 \dots \Upsilon_m)^k$

= T1 k T2 k ... Tm because disjoint cycles commute

Tik = ld iff k is a multiple of the length of Ti.

So IT is the smallest positive integer which is a multiple

of every cycle length.

Def A 2-cycle is also called a transposition.

Frop Every cycle is a product of transpositions.

 $\frac{\text{Ex}}{(12345)} = (12)(23)(34)(45)$ (12345) = (15)(14)(13)(12)

(12345) = (15)(23)(14)(12)(23)(12)

Proof Let $T = (a_1 a_2 \dots a_k)$ be a k-cycle Then $T = (a_1 a_2) (a_2 a_3) (a_3 a_4) \dots (a_{k-1} a_k)$

Since every TE Sn is a product of cycles,

every TE Sn can be written as a product of transpositions

Note This product is not unique, as the example shows
Than Sn is generated by transpositions

Thm Let VESn. Then either

* every expression of T as a product of 2-cycles has an even number of 2-cycles

(in this case, T is called an even permutation)

or

* every expression of T as a product of 2-cycles

has an odd number of 2-cycles

(T is called an odd permutation)

Whether Tis even or odd depends on the cycle type.

 $\underline{E_X}$ (12345) = (12)(23)(34)(45) is an even permutation

Ex The elts of Sq, by cycle type:

cycle type	e Types	permutations	count
Even (1,1,1,1))	d= (1)(2)(3)(4)	1
odd (2,1,1)	2-cycles or "transpositions"	(12), (13),, (34)	6
Even (3,1)	3-cycles	(123),, (243)	8
odd (4)	4-cycles	(1234),, (1432)	6
Even (2,2)	(2,2)-cycles	(12)(34), (13)(24), (14)(23)	+
-			24=4!

Thm The set $A_n := \{ \text{even permutations in } S_n \}$ is a subgroup of S_n .

(Def An is called the alternating group on [n]

- Pf. Id can be written as the product of O transpositions, so it's an even permutation.
 - · Closure: The product of two even permutations is also even
 - Inverse: If $T \in A_n$ then T can be written as a product $T_1 V_2 \cdots V_r$ of transpositions where r is even.

 Then $T' = V_T V_{r-1} \cdots V_r V_1$ so T' is also in A_n .
- Prop The number of even permutations in Sn $(n\geq 2)$ is equal to the number of odd permutations, so $|A_n| = \frac{n!}{2}$
- Troof let $B_n = \{odd \text{ permutations in } S_n\}$ (Extra)

 We will give a bijection from A_n to B_n .

 Let $f: A_n \longrightarrow B_n$ $f(\sigma) = (12) \sigma$ To prove that f is injective, let $f(\sigma) = f(\pi)$.

Then (12) $T = (12) \pi$ Multiply on the left by (12):

$$(12)(12) \nabla = (12)(12) \nabla = \pi$$

To prove that f is surjective, let $\omega \in \mathbb{R}_n$. Then ω can be expressed as $\omega = \omega_1 \cdots \omega_r$ where the ω_i are transpositions and r is odd. Then (12) w is an even permutation and we have f((12)w) = w, as needed.

count Ex A4 has 12 e(+s 11 ld 1 3-cycles STX of them (2,2)-cycles (12)(34), (13)(24), (14)(23)

Prop The twelve rotations of a regular tetahedron can be described as elfs of Aq, (Extra)

Remark Many molecules w/ chemical formulas of the form AB4, such as methane (CH4) and carbon tetrachloride (CCI4), have A4 as their rotational symmetry group.

Additional examples

Ex: $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$ can be viewed as the cyclic group $\langle r \rangle$ generated by $\Gamma = (126)(45)$ or $\Gamma = (132645)$ a 6-cycle

Ex: Symmetry $(\Delta) = D_3$ is S_3

Ex: Symmetry ()= D4 is a subgroup of 24 when viewed as follows:

- Initial State: 3
- 90° CC Rotation can be viewed as permutation $P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} = (1234)$
- Exercise: Check that the other $= \frac{3}{4}$ rotations are p^2 and p^3 and p^4
- Vertical flip (reflection across a horizontal mirror) $\frac{3}{4}$ $\frac{1}{1}$ mirror can be viewed as permutation $p = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} = (1 & 2)(34)$ $= \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$
- · Exercise: The other reflections
 are (14)(23), (24), and (13)
- · Check: These eight permutations form a group.