Document last updated Tue, Sep 16, 2025

Abstract Algebra Notes

Day 2 Tue, 9/16/25 "Pythagorean
Triple" Day!

Outline * Break before 8 pm

- Present HW

- Quiz 1

- Lecture: groups from integers modulo n

Ch 3 subgroup, generators

Ch 30 Cayley diagrams

- Group activity: problems for next week's HW& quiz

TODO Fri: TP 2 Overleaf

Next Tue: HW02 Due in class

Integers modulo n

Study for Quiz 2: Quiz @ Start of class

(Gn O pg 6)

What month vill it be I month from now?

12 months from now? 25 months from now?

Def: Let $n \in \mathbb{N}$. Integers $a, b \in \mathbb{Z}$ are <u>congruent modulo n</u>

(or a is <u>congruent to</u> b mod n) if

n divides (b-a),

that is, b-a=nk for some $k \in \mathbb{Z}$.

Notation: $a \equiv b \pmod{n}$

Denote $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$.

Integers and n

Ch 2 Example 7 pg 44

Prop (Zn,+) is an abelian group:

- 1 + is associative
- 2 0 is the identity
- \bigcirc The inverse of a is -a
- Addition modulo n is commutative

(Zn,+) is also denoted by Zn for chort

Ex The group $\mathbb{Z}_4 = \{0,1,2,3\}$ under + can be described in an operation table (called <u>Cayley table</u> for group)

Remark The Cayley table is symmetric across the main diagonal. This tells us $(\mathbb{Z}_4,+)$ is abelian.

Prop Multiplication modulo n is an associative binary operation wy identity 1.

Ex Operation table for Z4 under. is below.

Remark (Zn,) is not a group because not all elts have inverses.

See Ch 2 Example 11 (pg 46)

Define $U(n) := \{ a \in \mathbb{Z}_n \mid a \text{ has an inverse under } \}$ to be the group of units of \mathbb{Z}_n units mean invertible elements

Prop U(n) is equal to { a EZn | a and a are relatively prime}

Ex Cayley table for U(4) = [1,3] under.

1 1 3
1 1 3
3 3 1

Ch 3 Finite groups; Subgroups

I. Terminology & notation

Def The order of a group G, denoted by 161, is the number of elts of G.

Def The order of an element x of a group G, denoted by |x|, is the smallest positive integer k such that $x^k = e$.

If $x^k \neq e$ for every positive integer k, then x has infinite order

 $\underline{E_{x}}$: | Rectargle mattress group | = 4, | D4 | = 8 | | x | = 1 iff x = e

| Rotation $|80^{\circ}| = 2$, | Rotation $\frac{2\pi}{5}| = 5$

Ex Order of $(Z_{9,t})$ is forder of 0:1 0=01: 4 (because 1+1+1+1=0)

4 is the smallest

2: 2 (because 2+2=0)

3: 2 (because 3+3+3+3=0)

I Subgroup Test

Def G group. A subgroup of G is a subset H G G which is also a group under the same binary operation. Notation: H & G leg means H is a subgroup of G

Let H be a subset of a group G.

(Subgroup Suppose H satisfies all 3 conditions:

Test) 1 H is nonempty (for example, show e is in H)

> 2 If hi, he & H then hi he & H (H is closed under the group operation)

3) If heH, then h'eH.

(H is closed under taking inverses) Then H is a subgroup of G.

Ex: Suppose G is an abelian group. Let H = {x < G | x2 = e}

Prove that $H \leq G$

Proof 1) e2 = e by def of identity so e E H

2) Assume $a,b \in H$. Then $a^2 = e$ and $b^2 = e$.

Then (ab)(ab) = a (ba) b

= a(a6)b since G is abelian

= (aa)(bb)= e e since $a^2 = e$ and $b^2 = e$

So ab EH

(3) Suppose a & H. Then a2 = e, so \(\bar{a}' = a \in H. \Bar{B}

III. Cyclic groups

$$\frac{\text{Def}}{\text{def}} G \text{ group}, \quad x \in G$$

$$\langle x \rangle \stackrel{\text{def}}{=} \left\{ x^k : k \in \mathbb{Z} \right\}$$

If the group operation is additive, write $\langle x \rangle = \{ kx : k \in \mathbb{Z} \}$

$$E \times G = Z , \langle 1 \rangle = Z = \langle -1 \rangle, \\ \langle 5 \rangle = \left[5k : k \in Z \right] = \langle -5 \rangle$$

$$G = Z_8, \langle 1 \rangle = Z_8 = \langle 3 \rangle$$

$$\langle 2 \rangle = \left[0, 2, 4, 6 \right]$$

$$\langle 4 \rangle = \left[0, 4 \right]$$

$$G = U(10) \langle 1 \rangle = \left[1 \right]$$

$$\langle 3 \rangle = \left[1, 3, 7, 9 \right] = G$$

$$\langle 7 \rangle = \left[1, 3, 7, 9 \right] = G$$

$$\langle 9 \rangle = \left[1, 9 \right]$$

Thm (x) is a subgroup of G (Thm 3,4)

$$\frac{Pf}{}$$
 (i) $e = x^{\circ} \in \langle x \rangle$

- 2) If $y, z \in \langle x \rangle$, then $y = x^m$ and $z = x^n$ for some $m, n \in \mathbb{Z}$ Thus yz = xmxn = xm+n, by Exponent law So 42 6 (x)
- 3) If y \(\xi \times \), then y = x for some m \(\Z \) Then y=1 = (xm)-1 = x-m by Exponent law $y^{-1} \in \langle x \rangle$

Thus $\langle x \rangle \leq G$.

Def (x) is called the cyclic subgroup of G generated by x.

Def A group G is called a cyclic group if $G = \langle x \rangle$ for some $x \in G$, and x is called a generator of G.

 $\pm x$ \mathbb{Z} is cyclic, 1 is a generator. -1 is also a generator $\langle 1 \rangle = \mathbb{Z} = \langle -1 \rangle$

Ex \mathbb{Z}_{12} is cyclic, 1 is a generator. Other possible generators are 5,7,11 In fact, every \mathbb{Z}_n is cyclic.

Ex U(8) is not cyclic. We see that <x>≠ U(8) for all x ∈ U(8).

$$\langle 1 \rangle = [1]$$
 $\langle 5 \rangle = [1, 5]$ $\langle 3 \rangle = [1, 3]$ $\langle 7 \rangle = [1, 7]$

(extra)

Thm $\langle x \rangle$ is the smallest subgroup of G containing x, meaning: if $H \leqslant G$ and $x \in H$ then $\langle x \rangle \leqslant H$.

Proof Suppose x & H for some subgroup H & G.

We need to show xk &H for all k & Z.

k=0: X° = e ∈ H (by requirement that H contains the identity)

KEIN: XK = XX...X EH (since H is closed under the group operation)

k=-1: X-1 EH (Since H Contains the inverse of each heH)

$$k \in \mathbb{Z}_{\leq -1}$$
: $\chi^{-k} = (a^{-1})^k = \underline{a^1 \cdots a^1} \in H$ (again by closure)

Therefore $\langle \times \rangle = \{ \times^{\kappa} : \kappa \in \mathbb{Z} \} \leq H$.

Def Let G be a group, and let S be a subset of G. We say that S is a generating set of G (or S is a set of generators for G) if every elt in G is a finite product of elts in S and their inverses. Notation: $G = \langle S \rangle$

 $\underline{\mathsf{Ex}}$ $\mathsf{D}_{\mathsf{n}} = \left(\mathsf{Rot}\left(\frac{\mathsf{ZII}}{\mathsf{n}}\right), \, \mathsf{f}\right) \mathsf{where} \, \mathsf{f} \, \mathsf{is} \, \mathsf{any} \, \mathsf{Specific} \, \mathsf{flip}.$

$$Ex$$
 $Z = \langle 1 \rangle = \langle -1 \rangle = \langle 2,3 \rangle = \langle 7,12 \rangle = \langle 2,3,5 \rangle$

Def S is called <u>minimal</u> if no proper subset of S different than <u>minimum</u> is a generating set of G.

 $\frac{E_X}{\{2,3\}}$, $\{2,3,5\}$, $\{1\}$ are all generating sets of \mathbb{Z} . $\{2,3\}$ and $\{1\}$ are both minimal, and $\{2,3,5\}$ is not minimal.

- Def Given a group G and a set of generators S, a <u>Cayley diagram</u> (or Cayley graph) consists of
- (1) vertices: all elts of G
- 2) Colored (or labeled) arrows: all elts in generating set S

* Write
$$(x) \xrightarrow{h} (y)$$

iff $xh = y$ for some $h \in S$

applying arrow h

means multiplying on the right

Note Following an h-arrow backwards means multiplying on the right by hi:

$$(x) \xrightarrow{h} (y)$$
 means $yh^{-1} = x$

* If, in addition, h is its own inverse, then we have xh=y iff x=xhh=yh

$$(X) \xrightarrow{h} (y)$$
 or $(X) \xleftarrow{h} (y)$

Our convention is to drop the tips on all these two-way arrows: (x) h' (y)

Ex
$$U(q) = \{1, 2, 4, 5, 7, 8\}$$
 is cyclic.
2 is a generator:
 $1 \xrightarrow{\times 2} 2 \xrightarrow{\times 2} 4 \xrightarrow{\times 2} 8 \xrightarrow{\times 2} 7 \xrightarrow{\times 2} 5$

This is the Cayley graph for G=U(9) with generating set S= [2]

Fact / Def Any cyclic group
$$\langle x \rangle$$
 has Cayley graph

 $e \xrightarrow{\times} x \xrightarrow{\times} x^2 \xrightarrow{\times} x^3 \rightarrow \dots x^{n-1}$ if $|x| = n$

and

 $x \xrightarrow{\text{order of } x''}$
 $x \xrightarrow{\text{order of } x''}$
 $x \xrightarrow{\text{order of } x''}$

$$\frac{E \times}{Z} \quad Z_{4} = \langle 1 \rangle \qquad 0 \xrightarrow{+1} 1 \xrightarrow{+1} 2 \xrightarrow{+1} 3$$

$$\frac{E \times}{Z} \quad Z_{n} = \langle 1 \rangle \qquad 0 \xrightarrow{+1} 1 \xrightarrow{+1} 2 \xrightarrow{+1} 3 \xrightarrow{+1} 1 \xrightarrow{+$$

Remark

- . If |x|=n, $\langle x \rangle$ has a Cayley graph that is the same as a Cayley graph of \mathbb{Z}_n , so $\langle x \rangle$ is "the same" as \mathbb{Z}_n .
- . If $|x| = \infty$, $\langle x \rangle$ has a Cayley graph that is the same as a Cayley graph of \mathbb{Z} , so $\langle x \rangle$ is "the same" as \mathbb{Z} .
- · Properties about Zn and Z hold for any cyclic group

Ex Even though
$$Z_6 = \langle 1 \rangle = \langle 5 \rangle$$
, it has minimal generating set $S = \langle 3, 4 \rangle$

The Cayley diagram for generating set {3,4} of

$$\mathbb{Z}_6 = \langle \stackrel{\mathsf{f}}{3}, \stackrel{\mathsf{R}}{+} \rangle \text{ is}$$

Ro

EX Six rigid motions / symmetries:

- 1) Identity
- 2) Counterclockwise rotation by $\frac{2\pi}{3}$ R: $\frac{2\pi}{3}$ $\frac{2\pi}{3}$
- 3) Counterclockwise rotation by $\frac{4\pi}{3}$ RR: $\frac{1}{3}$ \mapsto $\frac{1}{3}$ \mapsto $\frac{1}{3}$ \mapsto $\frac{1}{3}$
- 4) Negative slope mirror $flip f_1: \overbrace{3}^2 \mapsto \overbrace{2}^3$
- 5) Positive slope mirror flip $f_2: \frac{1}{3} \mapsto \frac{3}{1}$
- 6) Vertical mirror $flip f_3:$ $(\frac{2}{3}) \mapsto (\frac{2}{3})$

o	Ro	R ₁₂₀	R 240	fı	f2	F3
h	Ro	R120	£240	fi	-f ₂	£3
riso	R120	R 240	Ro	f ₂	f3	f1
K240	R ₂₄₀	R_{D}	R ₁₂₀	f3	4	f ₂
fi	f1	f 3	f2	Ro	R240	R ₁₂₀
f2_	f2	f,	-{3	R ₁₂₀	Ro	R ₂₄₀
f3	f3	f2	f ₁	R240	R ₁₂₀	Ro

The Cayley diagram for generating set
$$S = \begin{cases} f = f_1, R = R_{120} \end{cases} \text{ of } D_3 = \langle f, R \rangle \text{ is below:}$$

$$f = \begin{cases} f = f_1, R = R_{120} \end{cases} \text{ of } D_3 = \langle f, R \rangle \text{ is below:}$$

$$f = \begin{cases} f = f_1, R = R_{120} \end{cases} \text{ of } P_3 = \langle f, R \rangle \text{ is below:}$$

$$f = \begin{cases} f = f_1, R = R_{120} \end{cases} \text{ of } P_3 = \langle f, R \rangle \text{ is below:}$$

$$f = \begin{cases} f = f_1, R = R_{120} \end{cases} \text{ of } P_3 = \langle f, R \rangle \text{ is below:}$$

$$f = \begin{cases} f = f_1, R = R_{120} \end{cases} \text{ of } P_3 = \langle f, R \rangle \text{ is below:}$$

$$f = \begin{cases} f = f_1, R = R_{120} \end{cases} \text{ of } P_3 = \langle f, R \rangle \text{ is below:}$$

Exercise: The Cayley diagram for generating set [f1, f2] of D3 is below:

- end of ADF -