

Groups acting on sets &

Thm 6.1 Cayley's Theorem

Intuitively, a group G "acts" on a set S of configurations by "naturally permuting" the configurations in S .

Ex 1 (Extra Ex)

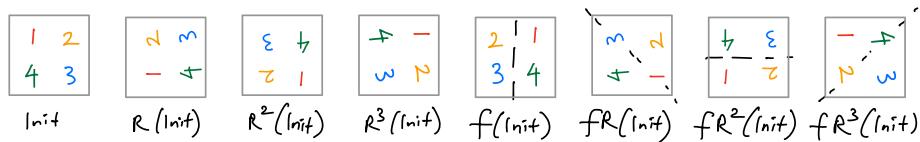
$G = D_4$ = Symmetry group of a square

$$= \{e, R, R^2, R^3, f, fR, fR^2, fR^3\} = \langle R, f \rangle$$

R = counterclockwise rotation by 90° ;

f = horizontal flip \longleftrightarrow

Configurations of the square mattress (corners labeled by 1, 2, 3, 4):

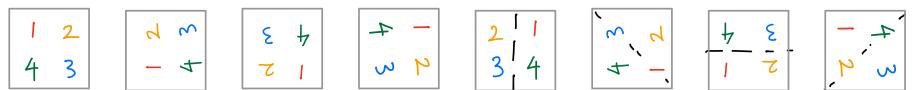


Let $\underline{X} = \{1, 2, 3, 4\}$, just a set.

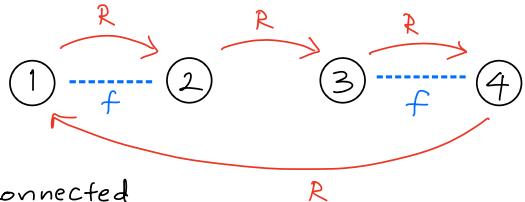
We can think of D_4 as the following permutations in \underline{X} :

$$e \quad R \quad R^2 \quad R^3 \quad f \quad fR \quad fR^2 \quad fR^3$$

$$e, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 2)(3 4), (1 3), (1 4)(2 3), (2 4)$$



Action diagram:

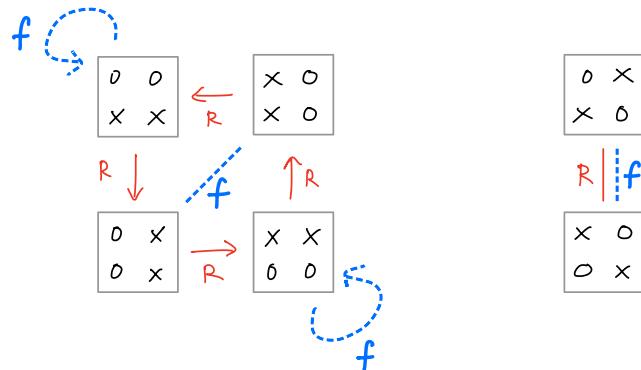


Note: This diagram is connected

Ex 2 $G = D_4 = \langle R, f \rangle$ again

$$\begin{aligned} \mathbb{X} &= \left\{ \text{squares w/ two corners labeled } \begin{array}{c} x \\ \hline o \end{array} \text{ and } \begin{array}{c} o \\ \hline x \end{array} \right\} \\ &= \left\{ \begin{array}{c} \begin{array}{cc} o & o \\ x & x \end{array} & \begin{array}{c} \begin{array}{cc} o & x \\ o & x \end{array} & \begin{array}{c} \begin{array}{cc} x & x \\ o & o \end{array} & \begin{array}{c} \begin{array}{cc} x & o \\ x & o \end{array} & \begin{array}{c} \begin{array}{cc} o & x \\ x & o \end{array} & \begin{array}{c} \begin{array}{cc} x & o \\ o & x \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \right\} \end{aligned}$$

Action diagram:



Note: This diagram is not connected

Remark (Extra): When the action diagram is connected,

the group action is called transitive

(from one elt a in the set \mathbb{X} , we can get to all other elts in \mathbb{X} using G)

Def Let G be a group and let \mathbb{X} be a set.

A left action of G on \mathbb{X} is a map

$$G \times \mathbb{X} \rightarrow \mathbb{X}$$

$$(g, x) \mapsto \underbrace{gx}_{\text{symbol}}$$

where

$$1. ex = x \text{ for all } x \in \mathbb{X}$$

$$2. (ba)x = b(ax) \text{ for all } x \in \mathbb{X} \text{ and } a, b \in G.$$

A set \mathbb{X} equipped w/ such a map is called a left G -set.

(Extra info)

Note: \underline{X} doesn't need to be related to G in any way. But group actions are more interesting when the G -sets \underline{X} is related to the group G in some way.

Ex 3 (Ex of group actions from linear algebra) (Extra Ex)

$$G = GL_2(\mathbb{R}) = \{ \text{2x2 invertible matrices w/ real entries} \}$$

$$\underline{X} = \mathbb{R}^2 = \{ \text{vectors } \begin{bmatrix} x \\ y \end{bmatrix} : x, y \in \mathbb{R} \}$$

Then G acts on \underline{X} by left multiplication

$$GL_2(\mathbb{R}) \times \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

$$\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right) \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Verify that this map satisfies the two conditions:

1. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \text{ for all } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$

2. For all $A, B \in GL_2(\mathbb{R})$, we have

$$(BA) \begin{bmatrix} x \\ y \end{bmatrix} = B(A \begin{bmatrix} x \\ y \end{bmatrix})$$

since matrix multiplication is associative.

Ex 1 and 2 are group actions for D_4

Def $\text{Perm}(\underline{X})$ = the group of $\frac{\text{permutations of } \underline{X}}{\text{bijections } \underline{X} \rightarrow \underline{X}}$

Note: If $|\underline{X}| = n$ then $\text{Perm}(\underline{X}) \cong S_n$

(This is the def used in class)

An alternative definition of group action

Intuition

- Given a group G , we have a "switch board" with a button \boxed{g} for every $g \in G$.
- Given $a \in G$, pressing the button \boxed{a} rearranges the objects in our set \underline{X} . This gives a permutation on \underline{X} ; call this $\overset{\text{Phi}}{\phi}(a) \in \text{Perm}(\underline{X})$
- Given $b \in G$, pressing the button \boxed{b} also rearranges the objects in our set \underline{X} . Call this permutation $\phi(b)$.
- The element $ba \in G$ also has a button \boxed{ba} .
- For G to act on \underline{X} , we require that pressing the \boxed{ba} button gives the same rearrangement of \underline{X} as first pressing the \boxed{a} button, followed by the button \boxed{b} , that is,

$$\phi(ba) = \phi(b) \phi(a) \quad (*)$$

for all $a, b \in G$

Alternative def of group action

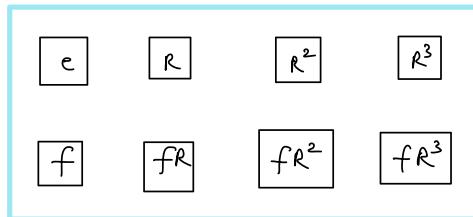
A left action of G on \underline{X} is a group homomorphism

$$\phi: G \longrightarrow \text{Perm}(\underline{X})$$

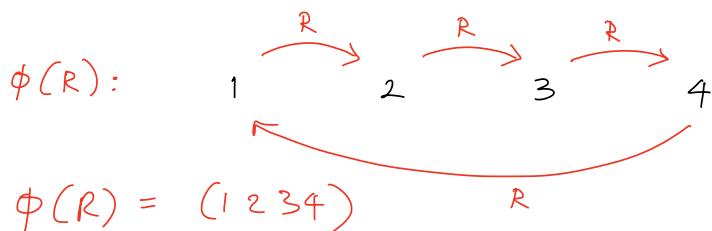
Note: A right action requires $\phi(ba) = \phi(a)\phi(b)$ instead of $(*)$

Back to Ex 1

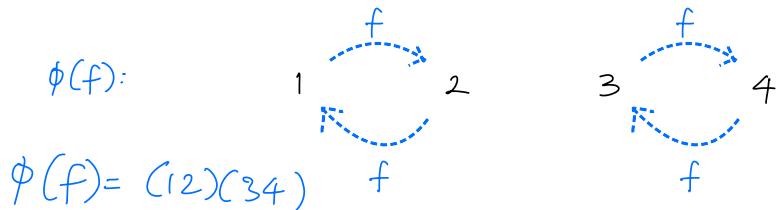
"Switchboard" for D_4 :



Pressing the R button permutes $\underline{x} = \{1, 2, 3, 4\}$ as follows:



Pressing the f button permutes $\underline{x} = \{1, 2, 3, 4\}$ as follows:



$$\phi(D_4) = \left\{ e, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 2)(3 4), (1 3), (1 4)(2 3), (2 4) \right\}$$

\leq
subgroup S_4

Exercise: In Example 2, think of the xxoo squares as $1, 2, \dots, 6$.

Let $\phi: D_4 \rightarrow S_6$ be the left action of D_4 on $\{1, 2, \dots, 6\}$.

Write the elements of $\text{im } \phi$. What familiar group is $\text{im } \phi$ isomorphic to?

Next, we see that every group acts on itself by left multiplication.

Def Let $\underline{X} = G$. Define the homomorphism

$$\phi: G \rightarrow \overbrace{\text{Perm}(G)}^{\text{Perm}(\underline{X})} \text{ by } g \mapsto T_g$$

where

$$T_g: G \rightarrow G \quad x \mapsto gx \text{ for all } x \in G \quad \begin{array}{l} \text{(that is, } T_g \text{ is multiplication)} \\ \text{by } g \text{ on the left} \end{array}$$

In other words, pressing the $[g]$ button on our "group switchboard" multiplies every element on the left by g .

The image $\phi(G) = \{T_g : g \in G\}$ is called the left regular representation of G .

Exercise: Prove that ϕ is a group homomorphism

Prove that ϕ is injective

Recall:
The units in \mathbb{Z}_{12} are 1, 5, 7, 11, & they form a group w/ operation.

Ex Calculate the left regular rep of $U(12) = \{1, 5, 7, 11\}$

$$T_1 = \text{multp by 1} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 1 & 5 & 7 & 11 \end{bmatrix} \quad T_5 = \text{multp by 5} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 5 & 1 & 11 & 7 \end{bmatrix} = (ab)(cd)$$

$$T_7 = \text{multp by 7} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 7 & 11 & 1 & 5 \end{bmatrix} \quad (ac)(bd)$$

$$T_{11} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 11 & 7 & 5 & 1 \end{bmatrix} \quad (ad)(bc)$$

Note Every group also acts on itself by right multiplication. The corresponding action diagram is equal to the Cayley diagram.

Cayley's Thm
(See Thm 6.1)

Every group is isomorphic to
a group of permutations.

Pf Let ϕ be the left regular representation

$$\phi: G \rightarrow \text{Perm}(G)$$

$$g \mapsto T_g$$

given above.

Then $\text{im } \phi$ is group of permutations.

Since ϕ is injective, we have $G \cong \text{im } \phi$. \square

Two contrasting reasons why Cayley's Thm is important

- ① Cayley's Thm allows us to represent an abstract group
in a concrete way
- ② Present-day set of axioms for a group is
the correct abstraction of a group of permutations.

Note: • Concepts similar to "group acting on set"
appear in other algebraic structures.

- For example, in ring theory, we have

" $\overset{\text{ring}}{R}$ -modules" instead of " $\overset{\text{group}}{G}$ -sets".

— end —