

Gallian Ch 15 Ring homomorphisms

Part I: Ring homomorphisms

(Just as a group homomorphism preserves the group operation, a ring homomorphism preserves the two ring operations)

Def A ring homomorphism from a ring R to a ring S

is a map $\varphi: R \xrightarrow{\text{domain}} S \xrightarrow{\text{codomain}}$ satisfying

$$\underbrace{\varphi(a+b)}_{\varphi \text{ preserves addition}} = \varphi(a) +_S \varphi(b) \quad \text{AND} \quad \underbrace{\varphi(ab)}_{\varphi \text{ preserves multiplication}} = \varphi(a) \varphi(b) \quad \text{for all } a, b \in R$$

Illustration:

$$\begin{array}{ccc} b & \xrightarrow{\varphi} & \varphi(b) \\ a & \xrightarrow{\varphi} & \varphi(a) \\ a+b & \xrightarrow{\varphi} & \varphi(a)+\varphi(b) \end{array}$$

$$\begin{array}{ccc} b & \xrightarrow{\varphi} & \varphi(b) \\ a & \xrightarrow{\varphi} & \varphi(a) \\ ab & \xrightarrow{\varphi} & \varphi(a)\varphi(b) \end{array}$$

Def The kernel of $\varphi: R \rightarrow S$ is the set

$$\ker \varphi = \{x \in R : \varphi(x) = 0_S\}$$

Def If a ring homomorphism is injective and surjective, it is called an isomorphism.

Ex Given $n \in \mathbb{Z}_{>0}$, the map $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_n$

(Extra) defined by $a \mapsto a \pmod{n}$

is a surjective ring homomorphism.

Check that $\varphi(a+b) = \varphi(a) + \varphi(b)$

$$\varphi(ab) = \varphi(a)\varphi(b)$$

$$\ker \varphi = \{nk : k \in \mathbb{Z}\} = n\mathbb{Z}$$

It is a surjective map.

Ex The map $\varphi: \mathbb{C} \rightarrow \mathbb{C}$

$$\varphi(a+bi) = a-bi$$

is a ring isomorphism.

(Prove that $\varphi(x+y) = \varphi(x) + \varphi(y)$ for all $x, y \in \mathbb{C}$)

Prove that $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in \mathbb{C}$:

$$\begin{aligned}\varphi((a+bi)(c+di)) &= \varphi((ac-bd)+(ad+bc)i) \\ &= ac-bd + (ad+bc)i \\ &= (a-bi)(c-di) \\ &= \varphi(a+bi)\varphi(c+di)\end{aligned}$$

Prove that φ is injective:

$$\text{Let } \varphi(a+bi) = \varphi(c+di)$$

$$a-bi = c-di$$

Then $a=c$ and $b=d$, so $a+bi = c+di$.

(Prove that φ is surjective)

Ex Let $\mathbb{R}[x]$ denote the ring of all polynomials with real coefficients.

* Consider the map $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}$

$$p(x) \mapsto p(5)$$

that is, if $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

$$\text{then } \varphi(p(x)) = a_0 + a_1 \cdot 5 + a_2 \cdot 5^2 + \dots + a_n \cdot 5^n$$

Then φ preserves addition and multiplication.

This map is called the evaluation homomorphism at 5.

Note $\ker \varphi = \left\{ p(x) \in \mathbb{R}[x] : \underbrace{\varphi(p(x))}_{p(5)} = 0 \right\}$

$$= \left\{ p(x) \in \mathbb{R}[x] : 5 \text{ is a zero/root of } p(x) \right\}$$

$p(x) \in \ker \varphi \text{ iff } 5 \text{ is a root of } p(x)$

* In general, given $\alpha \in \mathbb{R}$,

the map $\varphi_\alpha: \mathbb{R}[x] \rightarrow \mathbb{R}$

$$p(x) \mapsto p(\alpha)$$

is called the evaluation homomorphism at α .

Note: $p(x) \in \ker \varphi_\alpha$ iff α is a root of $p(x)$

Recall Since \mathbb{R} is a field, an elt $\alpha \in \mathbb{R}$ is a root of $p(x) \in \mathbb{R}[x]$ iff

$(x - \alpha)$ is a factor of $p(x)$ in $\mathbb{R}[x]$.

Prop Let $\varphi: R \rightarrow S$ be a ring homomorphism.

① $\varphi(0_R) = 0_S$

Compare with: "If $f: G \rightarrow H$ is a group homomorphism,
then $f(e_G) = e_H$ "

② We cannot say the same about the multiplicative identity (unity)
since not all rings have them.

IF R and S have unities 1_R and 1_S (respectively) and

if φ is surjective,

then $\varphi(1_R) = 1_S$.

Proof of ① $\varphi(0_R) = \varphi(0_R + 0_R) = \varphi(0_R) + \varphi(0_R)$ and

$$\varphi(0_R) = 0_S + \varphi(0_R)$$

$$\text{So } 0_S + \varphi(0_R) = \varphi(0_R) + \varphi(0_R).$$

By cancellation (since $(S, +)$ is a group), we have $\varphi(0_R) = 0_S$

Prop The kernel of a ring homomorphism $\varphi: R \rightarrow S$
is an ideal of R .

Proof We know from group theory that

$\ker \varphi$ is an additive subgroup of R .

Let $r \in R$, $a \in \ker \varphi$.

Show that $ar \in \ker \varphi$:

$$\varphi(ar) = \varphi(a)\varphi(r) = 0 \quad \varphi(r) = 0$$

Show that $ra \in \ker \varphi$:

$$\varphi(ra) = \varphi(r)\varphi(a) = \varphi(r)0 = 0. \quad \square$$

If $\ker \varphi = \{0\}$,
then φ is
injective

Part II: First Isomorphism Theorem

Note

Recall the natural or canonical homomorphism of groups

$$\pi: R \longrightarrow R/I$$

$$r \mapsto r+I$$

The kernel of π is I and π is surjective.

Thm

Let I be an ideal of R .

$$\text{The map } \pi: R \rightarrow R/I$$

$$r \mapsto r+I$$

is a ring homomorphism from R onto R/I

with kernel I .

Pf

The note above tells us

π is surjective, is a group homomorphism,

and has kernel I .

It remains to show that π preserves multiplication.

Let $s, t \in R$. Then

$$\pi(s)\pi(t) = (s+I)(t+I) = st+I = \pi(st) \quad \square$$

First Isomorphism Thm

Let $f: R \rightarrow S$ be a ring homomorphism

Let K denote $\ker f$.

Let $i: R/K \rightarrow S$ be defined by

$$r+K \mapsto f(r) \quad \text{for all } r+K \in R/K$$

Then i is an injection $R/K \hookrightarrow S$.

In particular, we have an isomorphism given by i

$$R/K \xrightarrow{\cong} \text{Im } f \quad \text{— the upshot}$$

Furthermore, $f = i \circ \pi$
the natural onto homomorphism

$$R \rightarrow R/\ker f$$

The diagram

$$\begin{array}{ccc} R & \xrightarrow{\pi} & R/\ker f \\ & \searrow f & \downarrow i \\ & & f(R) \end{array}$$

called a "commutative diagram"

illustrates the 1st isomorphism Thm.

We say "the diagram commutes" to mean $f = i \circ \pi$.

Note This tells us that every ring homomorphism can be written as a composition

(1-1 homomorphism) \circ (onto homomorphism).

Ex $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ defined by $\varphi(p(x)) = \underline{p(0)}$

$$\ker \varphi = \langle x \rangle = \{ f(x) \cdot x : f(x) \in \mathbb{Z}[x] \}$$

the constant term of $p(x)$

By 1st Isomorphism Thm, $\mathbb{Z}[\underline{x}] / \langle x \rangle \cong \mathbb{Z}$

— the end —