Partial solutions to Questions 1, 3, and 4 are given on the next page.

1. Cayley diagrams of direct products

Draw the Cayley diagram for each of the following.

- (1) $\mathbb{Z}_4 \times \mathbb{Z}_2$ with generators (1,0) (solid) and (0,1) (dotted),
- (2) $\mathbb{Z}_4 \times \{0\}$ with generator (1,0),
- (3) $\mathbb{Z}_2 \times \mathbb{Z}_2$ with generators (1,0) (solid) and (0,1) (dotted)
- (4) $\mathbb{Z}_2 \times \mathbb{Z}$ with generators (1,0) (dotted) and (0,1) (solid)
- (5) Draw the Cayley diagram for $\mathbb{Z}_2 \times \mathbb{Z}_6$ (choose any generator/s)

2. Fundamental Theorem of Finite Abelian Groups (reading)

Read the first $2\frac{1}{2}$ pages of Chapter 11 (pg 212, 213, and the top half of pg 214).

- (1) Write a brief paragraph summarizing a few key ideas for this reading.
- (2) Rewrite Theorem 11.1 using more math symbols (currently the theorem uses only words).

3. Fundamental Theorem of Finite Abelian Groups (Computation)

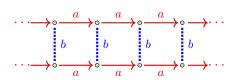
- (1) True or false? The group \mathbb{Z}_{14} is isomorphic to the group $\mathbb{Z}_2 \times \mathbb{Z}_7$
- (2) True or false? The group \mathbb{Z}_{16} is isomorphic to the group $\mathbb{Z}_4 \times \mathbb{Z}_4$
- (3) Which nontrivial direct product is \mathbb{Z}_{100} isomorphic to?
- (4) Which nontrivial direct product is \mathbb{Z}_{12} isomorphic to?
- (5) How many abelian groups of order $1176 = 2^3 \cdot 3 \cdot 7^2$ are there, up to isomorphism? List all of them.
- (6) How many abelian groups of order $540 = 2^2 \cdot 3^3 \cdot 5$ are there, up to isomorphism? List all.

4. Direct products of subgroups of S_7

- (1) Let $H = \langle (12), (345) \rangle$ denote the subgroup of S_7 generated by (12) and (345). Prove or disprove: There is an isomorphism from $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ onto H.
- (2) Let $J = \langle (12345), (67) \rangle$ denote the subgroup of S_7 generated by (67) and (12345). Prove or disprove: There is an isomorphism from \mathbb{Z}_{10} onto J.

Partial solutions to Question 1

The abstract Cayley diagrams for the first four (G, S) are drawn from left to right below. You should label the vertices with elements of G.



Partial solutions to Question 3:

- (1) True because the gcd(2,7) = 1. Alternatively, you can use $(1,1) \in \mathbb{Z}_2 \times \mathbb{Z}_7$ to generate the entire group and thus showing that it is a cyclic group of order 14.
- (2) False because the gcd(4,4) = 4.

Alternatively, you can check that every element in the group \mathbb{Z}_4 has order 1, 2, or 4, so every element in $\mathbb{Z}_4 \times \mathbb{Z}_4$ also has order 1, 2, or 4, and thus no element can generate the entire group. Therefore $\mathbb{Z}_4 \times \mathbb{Z}_4$ is not cyclic.

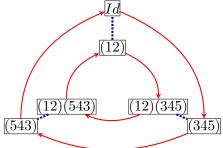
- (3) $\mathbb{Z}_{25} \times \mathbb{Z}_4$ (see Theorem 8.2 and its Corollary 2 in Gallian textbook pg 159-160)
- (4) N/A
- (5) Six. The list of distinct isomorphism classes of abelian groups of order 1176 is given in Gallian Chapter 11 on pg 214.

SOLUTIONS TO QUESTION 4 PART (1)

True.

First, let's find all elements of $H = \langle (12), (345) \rangle$ by drawing its Cayley diagram using the generating set $\{(12), (345)\}$. By definition, H is the set of all products of (12), (345), and their inverses.

Below is the Cayley graph for H with $S = \{(12), (345)\}$ as the generating set. Each solid arrow has label (345). Each dotted (blue) edge has label (12).



We found that $H = \{Id, (12)(345), (543), (12), (345), (12)(543)\}$, which is equal to $\{Id, c, c^2, c^3, c^4, c^5\}$, where c = (12)(345).

So H is a cyclic group of order 6. Every cyclic group of order n is isomorphic to \mathbb{Z}_n , so H is isomorphic to \mathbb{Z}_6 (meaning there exists an isomorphism between H and \mathbb{Z}_6).

We will now explicitly define an isomorphism from \mathbb{Z}_6 to H. Let $f:\mathbb{Z}_6\to H$ be defined by

$$f(x) = c^x$$

Below is the Cayley graph for H with c = (12)(345) as the generator (so here the generating set S is the singleton set $\{c\}$). Each solid (red) arrow is labeled by c = (12)(345).

