(Partial solutions to Questions 1, 2, and 4 are given on the next page.)

1. Conjugates

- (a) Let $\tau = (123...k)$. Prove that if σ is any permutation, then $\sigma \tau \sigma^{-1} = (\sigma(1) \ \sigma(2) \ \sigma(3) \ ... \ \sigma(k))$. Hint: Note that $\sigma^{-1}(\sigma(i)) = i$. Now compute $\sigma \tau \sigma^{-1}(\sigma(i))$.
- (b) Let $\mu = (b_1 \, b_2 \, \dots \, b_k)$ be a cycle of length k. Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1} = \mu$.

2. Conjugation computation

- (a) Let $\tau = (1234)$ and $\sigma = (135)(724)(89)$. Use Question 1 (and also direct computation) to find $\sigma \tau \sigma^{-1}$.
- (b) Let $\sigma = (2587)(93)(46)$. Use Question 1 (and also direct computation) to find $\sigma(123456)\sigma^{-1}$.
- (c) Let $\mu = (8275)$. Find a permutation σ such that $\sigma \tau \sigma^{-1} = \mu$.
- (d) Find a permutation σ such that $\sigma(123456)\sigma^{-1}=(921754)$.

3. Conjugate subgroups

Fact: Every group of order 4 is either isomorphic to \mathbb{Z}_4 or to V_4 . Every group of order 3 is isomorphic to \mathbb{Z}_3 . Below, when asked which group is it isomorphic to, the choices are these three groups.

- (a) Let $H = \{Id, (1234), (13)(24), (1432)\}.$
 - (i) Which group is H isomorphic to? (Hint: is there an element of order 4?)
 - (ii) Draw a Cayley graph for H.
 - (iii) Let a = (387). Compute the subgroup aHa^{-1} of S_8 , and draw the Cayley graph for aHa^{-1} next to the Cayley graph for H, as shown at the end of class notes (Day 5).
 - (iv) Which group is aHa^{-1} isomorphic to?
- (b) Let $J = \{Id, (12)(35), (13)(25), (15)(23)\}.$
 - (i) Which group is J isomorphic to? (Hint: is there an element of order 4?)
 - (ii) Draw a Cayley graph for J.
 - (iii) Let a = (387). Compute the subgroup aJa^{-1} of S_8 , and draw the Cayley graph for aJa^{-1} next to the Cayley graph for J, as shown at the end of class notes (Day 5).
 - (iv) Which group is aJa^{-1} isomorphic to?
- (c) Consider the alternating group A_3
 - (i) Which group is A_3 isomorphic to?

 - (ii) Draw a Cayley graph for A_3 (as you did in HW04). (iii) Let a=(12). Compute $a\,A_3\,a^{-1}$ and draw the Cayley graph for it.
 - (iv) What do you notice?
- (d) Let R be the counterclockwise rotation by 90° and let f be your favorite flip in D_4 . Let $H = \langle R \rangle =$ $\{R, R^2, R^3, e\}.$
 - (i) Draw the Cayley graph for H.
 - (ii) What group is H isomorphic to?
 - (iii) Compute the group fHf^{-1} and draw the Cayley graph for it.
 - (iv) What do you notice?

4. Abelian vs non-abelian Cayley diagrams

- (a) What pattern must appear in a Cayley diagram of a group G if and only if G is non-abelian?
- (b) Below are Cayley diagrams of six different (pairwise-nonisomorphic) groups. For each Cayley diagram, explain in one-sentence why the corresponding group is abelian or not abelian.

Partial Proof for Question 1

(a) Suppose σ is a permutation in S_n . (We need to show that, for all i = 1, 2, ..., k - 1, the permutation $\sigma \tau \sigma^{-1}$ sends $\sigma(i)$ to $\sigma(i+1)$; we also need to show that $\sigma \tau \sigma^{-1}$ sends $\sigma(k)$ to $\sigma(1)$.)

If
$$i = 1, 2, ..., k - 1$$
, then we have
$$\sigma \tau \sigma^{-1}(\sigma(i)) = \sigma \tau(i) \text{ since } \sigma^{-1} \sigma \text{ is the identity map}$$
$$= \sigma(i+1) \text{ since } \tau \text{ sends } i \text{ to } i+1$$

((Now you need to show that $\sigma\tau\sigma^{-1}$ sends $\sigma(k)$ to $\sigma(1)$))

This concludes the proof that $\sigma \tau \sigma^{-1} = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \dots \ \sigma(k)).$

(b) Since the previous part tells us that $\sigma\tau\sigma^{-1} = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \dots \ \sigma(k))$, we can choose a permutation σ such that $\sigma(1) = b_1, \sigma(2) = b_2, \dots, \sigma(k) = b_k$.

Partial answers for Question 2

- (a) Let $\tau = (1234)$ and let $\sigma = (135)(724)(89)$. Answer: $\sigma \tau \sigma^{-1} = (135)(724)(89)(1234)(531)(427)(89) = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \sigma(4)) = \boxed{(3457)}$
- (b) n/a
- (c) Let $\mu = (8275)$. Answer: We need to find a permutation such that

$$\sigma\tau\sigma^{-1} = \mu:$$

$$\sigma(1234)\sigma^{-1} = (8275)$$

We can use the result $\sigma\tau\sigma^{-1}=(\sigma(1)\ \sigma(2)\ \sigma(3)\ \dots\ \sigma(k))$ from Question 1. Let σ be a permutation which sends 1 to 8, 2 to 2, 3 to 7, 4 to 5. For example, we can choose $\sigma=(18)(37)(45)$ or $\sigma=(186)(4537)$.

Then (if you choose the first boxed option), we have $\sigma\tau\sigma^{-1} = (18)(37)(45)(1234)(18)(37)(45) = (8275) = \mu$

(d) n/a

PARTIAL ANSWERS FOR QUESTION 4:

The pattern on the left *never* appears in the Cayley graph for an abelian group, whereas the pattern on the right illustrates the relation ab = ba:

