Math 4210/5210 Algebra HW 04

Submit hand-written (or typed) solutions at the beginning of class.

(Partial solutions to Questions 2, 3, and 5 are given on the next page.)

1. Question

Let n > 1. Let A_n and B_n denote the set of even permutations and the set of odd permutations in the symmetric group S_n , respectively. Define a map

$$f:A_n\to B_n$$

by

$$f(\pi) = (1 \, 2)\pi$$
 for all $\pi \in A_n$.

Prove that this map is injective and surjective. (Thus, the two sets have the same number of elements.)

2. Question

- (a) Draw a Cayley diagram for S_3 using generating set $\{(1\ 3),\ (3\ 2\ 1)\}.$
- (b) Draw a Cayley diagram for S_3 using generating set $\{(1\ 3),\ (2\ 3)\}.$
- (c) What is the alternating group A_3 (of even permutations) in S_3 ? Draw a Cayley diagram for A_3 .

3. Question

Consider the map $\psi: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ defined by

$$\psi(m) = 3m$$

- (a) Prove that ψ is a homomorphism.
- (b) List the elements in the kernel of ψ .
- (c) Is ψ an isomorphism?

4. Question

Let \mathbb{C}^* denote the multiplicative group of nonzero complex numbers.

Consider the map $\phi: \mathbb{C}^* \to \mathbb{C}^*$ defined by

$$\phi(z) = z^4$$

- (a) Prove that ϕ is a homomorphism.
- (b) List the elements in the kernel of ϕ .

Note: Since 1 is the identity element in \mathbb{C}^* , the kernel of ϕ is ker $\phi = \{z \in \mathbb{C}^* : \phi(z) = 1\}$.

- (c) Is ϕ an isomorphism? (If yes, prove that it is both surjective and injective; if no, prove that it's not injective or not surjective.)
- (d) Find an element of order 2 in \mathbb{C}^* . Find two elements of order 4 in \mathbb{C}^* .

5. Inner automorphism

Warm-up: First, study the 4-step proof (that the conjugation map is an isomorphism) in Example 6 of Chapter 6 (pg 123).

- (a) Warm-up: Rewrite this same proof in your own words (or exactly as written in the book).
- (b) Prove that the function ϕ_a defined on pg 128 is indeed an automorphism. Mimic the four steps given in Example 6.
- (c) What is the kernel of ϕ_a ? Why?
- (d) Consider the cyclic subgroup $H = \langle (1234) \rangle$ of S_4 . List all elements in H, and list all elements of the subgroup $(23)H(23)^{-1}$. Draw the Cayley diagrams for H and $(23)H(23)^{-1}$ in such a way that we can see that the two groups are isomorphic.

Answers for Question 2:

- (a) Answer: Same graph as given in class notes for $S = \{(12), (123)\}$ but with vertices arranged differently.
- (b) Answer: Same graph as given in class notes for $S = \{(12), (23)\}$ but with vertices arranged differently.
- (c) Answer: $A_3 = \{(1), (123), (321)\} = \langle (123)\rangle = \langle (321)\rangle$ is a cyclic group of order 3, so your Cayley diagram should look like a Cayley diagram for \mathbb{Z}_3 with generator 1.

Answers for Question 3:

- (a) Proof. Suppose $a, b \in \mathbb{Z}_{12}$. Then $\psi(a+b) = 3(a+b) = 3a+3b = \psi(a) + \psi(b)$.
- (b) Answer: The elements in ker ψ are the elements $a \in \mathbb{Z}_{12}$ such that 3a is congruent to 0 modulo 12, that is, 3a 0 is divisible by 12. So

$$\ker \psi = \{0, 4, 8\}$$

(c) Answer: No, the function ψ is not an isomorphism. For example, we know ψ is not injective since $\psi(0) = 0 = \psi(4)$ although $0 \neq 4$ in \mathbb{Z}_{12} .

HINT FOR QUESTION 5:

For part (d), the Cayley diagrams for both subgroups should be a cycle of length 4.