Some cyclic groups 1

Let
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$, and $\sigma = (126)(45) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 3 & 5 & 4 & 1 & 7 \end{bmatrix} \in S_7$

- For each group below, if the group is finite, list all elements; if the 1.1 group is infinite, describe all elements
- 1. $\langle 2D \text{ rotation by } 240^{\circ} \rangle$
- $2. \langle \sigma \rangle$
- 3. $\langle A \rangle$
- 4. $\langle B \rangle$
- 5. $\langle AB \rangle$

- 1.2 Match the groups from Question 1.1 with the groups below

- (i) \mathbb{Z}_2 ____ (ii) \mathbb{Z}_3 ____ (iii) \mathbb{Z}_4 ____ (iv) \mathbb{Z}_6 ____ (v) \mathbb{Z} ____

2 Twenty four

- (a) If a group element x is such that $x^{24} = e$, what are the possible orders of x?
- (b) Draw the subgroup lattice of \mathbb{Z}_{24}

3 Book exercises

4 A cycle of odd length

- Warm-up: First compute $(15428)^2 = (15428)(15428) = \dots$
- Suppose σ is a cycle of odd length $(a_1 \ a_2 \dots \ a_{2k} \ a_{2k+1})$. Compute σ^2 .
- If σ is a cycle of odd length, prove that σ^2 is also a cycle.

5 Product of transpositions (lemma)

a. Example: First try writing (25) as a finite product of $(12), (13), (14), \ldots, (1n)$. (An answer is given at the end of this document)

Warm-up: Now write (37) as a finite product of $(12), (13), (14), \ldots, (1n)$.

Write the transposition (a b) as a finite product of $(12), (13), (14), \dots, (1n)$.

b. Example: First try writing (25) as a finite product of $(12), (23), (34), \ldots, (n-1, n)$. (An answer is given at the end of this document.)

Warm-up: Now write (15) as a finite product of $(12), (23), (34), \dots, (n-1, n)$.

Write the transposition (a b) as a finite product of $(12), (23), (34), \dots, (n-1, n)$.

6 Theorems

- a. Prove that any permutation in S_n can be written as a finite product of $(12), (13), (14), \ldots, (1n)$.
- b. Prove that any permutation in S_n is a finite product of $(12), (23), (34), \ldots, (n-1, n)$.

Warm-up: (25) = (12)(15)(12)Warm-up: (25) = (23)(34)(45)(34)(23)