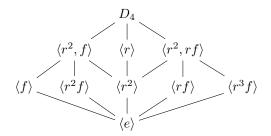
1. (a) Let n > 1. Let A_n and B_n denote the set of even permutations and the set of odd permutations, respectively. Define a map $f: A_n \to B_n$ by $f(\pi) = (1\,2)\pi$ for all $\pi \in A_n$.

Prove that this map is injective and surjective.

- (b) Let H be a subgroup of a group G, and let $x \in G$. Define a bijective map f from H to xH.
- (c) Show that this map is surjective.
- (d) Suppose G is a non-abelian group of order 1000 and H is a subgroup of order 20. Let x be an element of G which is not in H.
 - (i) How many elements are in the left coset xH?
 - (ii) How many elements are in the right coset Hx?
 - (iii) How many left cosets of H are there?
- 2. (a) I listed all subgroups of D_4 (in a subgroup lattice) below. Label each edge between $K \leq H$ with the index [H:K].



- (b) Is $f(r) = \langle r \rangle f$? What about other left and right cosets of $\langle r \rangle$? Prove your answer.
- (c) Is the left coset $r^3 f(r^2, f)$ equal to the right coset $\langle r^2, f \rangle r^3 f$?
- 3. (a) If H is a subgroup of G and $a \in G$, then a left coset aH is ... [give the definition]
 - (b) The index [G:H] of a subgroup $H \leq G$ is [give a definition, not a theorem!] ...

Theorem 1. Let H be a subgroup of G. Then the following are all equivalent.

- (i) The subgroup H is called normal in G, that is, gH = Hg for all $g \in G$; ("left cosets are right cosets");
- (ii) $ghg^{-1} \in H$ for all $h \in H, g \in G$; ("closed under conjugation").
- (iii) $gHg^{-1} = H$ for all $g \in G$; ("only one conjugate subgroup")
- 4. (a) Consider the subgroup $H = \{(1), (1,2)\}$ of S_3 . Is H normal?
 - (b) Consider the subgroup $J = \{(1), (123), (132)\}\$ of S_3 . Is J normal?
 - (c) Consider the subgroup $H = \langle (1234) \rangle$ of S_4 . Is H normal?
 - (d) Let n > 2. Is A_n a normal subgroup of S_n ?
 - (e) Consider a mystery subgroup K of $\mathbb{Z}_5 \times \mathbb{Z}_8$. Is K normal?
- 5. Let H be a subgroup of G. Given two fixed elements $a, b \in G$, define the sets

$$aHbH := \{ah_1bh_2 : h_1, h_2 \in H\}$$
 and $abH := \{abh : h \in H\}$.

- (a) Prove that if H is normal then $aHbH \subset abH$.
- (b) Prove that the statement is false if we remove the "normal" assumption. That is, give a specific G and H and $a, b \in G$ such that aHbH is not a subset of abH.
- (c) In class, we proved that multiplication of cosets of N is well-defined if N is a normal subgroup. Give an example where "multiplication" of cosets is not well-defined. That is, give a group G and a subgroup H where $a_1H = a_2H$ and $b_1H = b_2H$ but $a_1b_1H \neq a_2b_2H$.

- 6. (a) Given two groups A and B, what is the definition of the set $A \times B$? What is the binary operation on $A \times B$
 - (b) What is the identity element of $A \times B$?
 - (c) If $(a,b) \in A \times B$, what is the inverse $(a,b)^{-1}$ equal to?
 - (d) Assume that neither of A and B is the trivial group. Prove that these four subgroups are normal in $A \times B$:

$$\{e_A\} \times \{e_B\}, \qquad A \times \{e_B\}, \qquad \{e_A\} \times B, \qquad A \times B$$

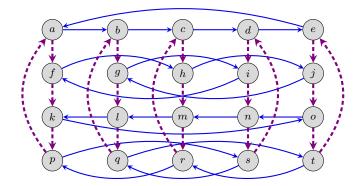
- 7. (a) True or false? The order of the group D_n is the same as the order of the group $\mathbb{Z}_2 \times \mathbb{Z}_n$.
 - (b) True or false? The group D_n is isomorphic to the group $\mathbb{Z}_2 \times \mathbb{Z}_n$.
 - (c) True or false? The group \mathbb{Z}_{14} is isomorphic to the group $\mathbb{Z}_2 \times \mathbb{Z}_7$.
 - (d) True or false? The group \mathbb{Z}_{16} is isomorphic to the group $\mathbb{Z}_4 \times \mathbb{Z}_4$.
 - (e) Which direct product is isomorphic to \mathbb{Z}_{12} ?
- 8. Let H be a subgroup of G.
 - (a) What does the notation G/H mean?
 - (b) When is G/H a group?
 - (c) If G/N is a quotient group, what is the binary operation of the quotient group G/N?
 - (d) Consider the symmetric group S_3 and a subgroup $H := \langle (1\ 2) \rangle$. Is the set $S_3/\langle (1\ 2) \rangle$ a quotient group? Prove your answer. If it is a quotient group, what is it isomorphic to?
 - (e) Consider the symmetric group S_3 and a subgroup $J := \langle (1\ 2\ 3) \rangle$. Is S_3/J a quotient group? Prove your answer. If it is a quotient group, what is it isomorphic to?
- 9. The following are all normal subgroups of D_4 :
 - (a) The trivial subgroup $\{e\}$,
 - (b) the only normal subgroup of order 2, $\langle r^2 \rangle$,
 - (c) all the subgroups of order 4: $\langle r \rangle$, $\langle r^2, f \rangle$, $\langle r^2, rf \rangle$, and
 - (d) D_4 itself.

For each N above, what familiar group is D_4/N isomorphic to?

10. Let H be a subgroup of G, and consider the subset of G denoted by

$$Nor_G(H) = \{g \in G : gH = Hg\} = \{g \in G : gHg^{-1} = H\}.$$

- (a) Prove that $Nor_G(H)$ is a subgroup.
- (b) What is the smallest that $Nor_G(H)$ can be? What is the largest $Nor_G(H)$ can be?
- (c) When does the latter happens?
- 11. Let G be the group whose Cayley diagram is shown below, and suppose e is the identity element. Consider the subgroups $A = \langle a \rangle = \{a, b, c, d, e\}$ and $J = \langle j \rangle = \{e, j, o, t\}$.



Carry out the following steps for both of the subgroups A and J. List the cosets element-wise.

- (a) Write G as a disjoint union of the left cosets of A. Write G as a disjoint union of the left cosets of J.
- (b) Write G as a disjoint union of the right cosets of A. Write G as a disjoint union of the right cosets of J.
- (c) Use your coset computation to immediately compute the normalizer of the subgroup. Based on the computation for the normalizer, what you can say about this subgroup?
- (d) Is G/A a group? If so, perform the quotient process and draw the resulting Cayley diagram for G/A.
- (e) Is G/J a group? If so, perform the quotient process and draw the resulting Cayley diagram for G/J.
- 12. The *center* of a group G is the set

$$Z(G) = \{z \in G \mid gz = zg, \text{ for all } g \in G\} = \{z \in G \mid gzg^{-1} = z, \text{ for all } g \in G\}.$$

It is a subgroup of G.

- a. Prove that Z(G) is normal in G by showing $ghg^{-1} \in H$ for all $h \in H, g \in G$ ("closed under conjugation").
- b. Compute the center of \mathbb{Z}_6 . Compute the center of S_2 .
- c. Compute the center of D_4 .
- d. Compute the center of D_5 .
- e. Consider the group A_3 of even permutations. Compute the center of A_3 .
- f. Consider the group A_n of even permutations, where $n \ge 4$. Prove that $(1\ 2\ 3)$ is not in the center of A_n by producing another even permutation which does not commute with $(1\ 2\ 3)$.
- g. Let $n \geq 4$. Prove that $(1\ 2)(3\ 4)$ is not in the center of A_n .
- h. First, convince yourself that a non-identity permutation in S_4 is an even permutation if and only of its cycle notation is of the form (ab)(cd) or (abc).

Compute the center of A_4 Hint: Do (ab)(cd) and (abc) commute?

- i. Compute the center of S_4 .
 - Hint: Every non-identity permutation in S_4 can be written in the form (ab), (abc), (abcd), and (ab)(cd). Can you find a permutation that does not commute with (ab)? With (abcd)?
- j. Prove that "the center of a direct product is the direct product of the centers", that is, $Z(A \times B) = Z(A) \times Z(B)$.
- 13. Notation/Definition: Let G be a group and $x \in G$.
 - The conjugacy class of x is the set $\operatorname{cl}_G(x) := \{qxq^{-1} \mid q \in G\}.$
 - Let Z(G) be the set $\{z \in G \mid gz = zg \text{ for all } g \in G\}$.

Suppose N is a normal subgroup of G. Prove that if $x \in N$, then $\operatorname{cl}_G(x) \subset N$.

14. You can use the following fact.

Proposition 1. For any $\sigma \in S_n$, we have σ $(a_1 \ a_2 \ \dots \ a_k) \ \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_k)).$

- (a) Let x be a k-cycle. Prove that $y \in S_n$ is conjugate to x iff y is a k-cycle.
- (b) Prove that (12) and (14) in S_6 are conjugate by finding a permutation $p \in S_6$ such that $p^{-1}(12)p = (14)$.
- (c) List all permutations in S_4 which are conjugate to (1234). Use the fact from part (a).