Abstract Algebra Individual Quiz 11

1 Question

Demonstrate that the ideal $9\mathbb{Z}$ is not a maximal ideal of \mathbb{Z} by providing a different ideal J of \mathbb{Z} which contains $9\mathbb{Z}$.

Solution: The ideal $3\mathbb{Z}$ properly contains $9\mathbb{Z}$.

2 Question

The quotient ring $\mathbb{R}[x]/\langle x-10\rangle$ is isomorphic to \mathbb{R} by applying the 1st isomorphism theorem using the evaluation homomorphism

$$\varphi : \mathbb{R}[x] \to \mathbb{R}$$
 defined by $p(x) \mapsto p(10).$

Is the principal ideal $\langle x - 10 \rangle$ a maximal ideal in $\mathbb{R}[x]$?

Solution: Since \mathbb{R} is a field, the quotient ring $\mathbb{R}[x]/\langle x-10\rangle$ is a field. Because of Theorem 16.35, the ideal $\langle x-10\rangle$ is maximal in $\mathbb{R}[x]$.

3 Question

Demonstrate that $9\mathbb{Z}$ is not a prime ideal of \mathbb{Z} (by finding elements a, b such that $ab \in 9\mathbb{Z}$ but $a \notin 9\mathbb{Z}$ and $b \notin 9\mathbb{Z}$).

Solution: a = 3, b = 3 work. a = 21, b = 24 also work. a = 30, b = 600 also work.

4 Question

Let R be a commutative ring with unity. Prove: if I is a maximal ideal of R then I is also a prime ideal of R.

Solution: Suppose I is a maximal idea of R. A theorem from Section 16.4 tells us R/I is a field. So R/I is an integral domain by definition. Another theorem from Section 16.4 tells us that I is prime ideal. If you finish the quiz early, work on the following problem. (This page will not be graded.)

Let G be a group. Consider the map

$$\label{eq:phi} \begin{split} \phi:G \to \operatorname{Perm}(G) \quad \text{ defined by } \\ g \mapsto T_q \end{split}$$

where T_g is the bijection from G to itself (that is, T_g is a permutation on G) defined by

$$T_q(x) = gx$$
 for all $x \in G$

(i.e., T_g is multiplication by g on the left).

- (a) Prove that ϕ is a group homomorphism.
- (b) Prove that ϕ is injective.
- (c) Pick a familiar group G with small order (say, 3 or 4 or 6). Write the Cayley table (group operation table) for this G. Then use it to compute the permutation T_g for each g in your chosen group G.

• Rename the elements g of your chosen group G so that the elements of G are $1, 2, \ldots, |G|$. Rewrite each T_g in cycle notation. Draw the Cayley graph of $\{T_g : g \in G\}$ with vertices written in cycle notation.