Abstract Algebra Individual Quiz 8

Student ID:

1 Units

Definition 1. Let R be a ring which has unity denoted by the symbol **1**. An element $u \in R$ is called a *unit* (also called an *invertible element*) if there exists $v \in R$ such that $uv = vu = \mathbf{1}$.

Suppose R is a ring with unity 1 and $x \in R$. Prove the following:

if $x^2 = \mathbf{0}$ then $\mathbf{1} - x$ is a unit.

Solution: Let v = 1 + x. Then we have

(1-x)v = (1-x)(1+x)= 1 + x - x(1 + x) = 1 - x² = 1 since x² = 0

2 Characteristic

Definition 2. We define the *characteristic* of a ring R to be the least positive integer such that

$$n \cdot r = \underbrace{r + r + \dots + r}_{n \text{ copies}} = \mathbf{0}$$

for all $r \in R$. If no such integer exists, then the characteristic of R is defined to be 0.

(a) What is the characteristic of the ring \mathbb{Z}_{40} ?

Solution: The order of the unity element 1 is 40, so, by Lemma 16.18 in Textbook section 16.2, the characteristic of the ring \mathbb{Z}_{40} is 40.

(b) What is the characteristic of the ring \mathbb{Z} of integers?

Solution: There is no positive integer n such that $n \cdot 1 = 0$, so the characteristic of this ring is 0.

3 Zero divisors

Definition 3. A nonzero element d in a commutative ring R is called a *zero divisor* if there is a nonzero element c in R such that dc = 0.

(a) What are the zero divisors (if any) of the ring \mathbb{Z}_8 ?

Solution: All the nonzero elements which are not units: 2, 4, 6. For example, 6 is a zero divisor because (6)(4) = 0.

(b) What are the zero divisors (if any) of the ring \mathbb{Z} of integers?

Solution: There are no zero divisors

4 Rings

(a) Let S be the set of 2×2 matrices with even integers as entries. In set-builder notation,

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in 2\mathbb{Z} \right\}$$

Prove that S is closed under taking additive inverse (where addition is the usual matrix addition).

Solution: Suppose $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in S$. Then its additive inverse is $\begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$ since their sum is the zero matrix. We can conclude that $\begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} \in S$ because -z is even for all even integers z.

(b) Let T be the set of 2×2 matrices of the form

$$\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$$

where $x, y \in \mathbb{Z}$. In set-builder notation, $T = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} : x, y \in \mathbb{Z} \right\}$. Prove that T is closed under the usual matrix multiplication.

Solution: Suppose $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} \in T$. Then $a, b, c, d \in \mathbb{Z}$, and so $ac, ad \in \mathbb{Z}$. Then $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} ac & ad \\ 0 & 0 \end{pmatrix} \in T$ since $ac, ad \in \mathbb{Z}$.