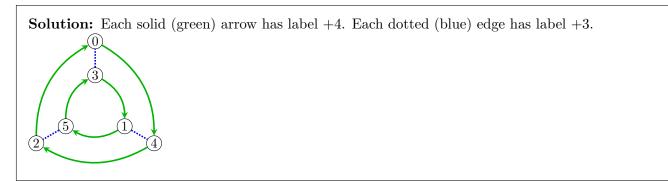
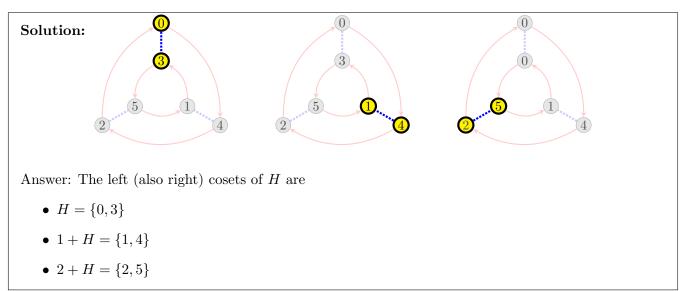
1. The group $(\mathbb{Z}_6, +)$ has a minimal generating set $S = \{3, 4\}$. Draw the Cayley graph with this S as the generating set.



Note: To distinguish the two types of arrows, label them by +3 and +4.

2. Let $H = \langle 3 \rangle = \{0, 3\}$ denote the cyclic subgroup of \mathbb{Z}_6 generated by 3. Write down all the left cosets of H.



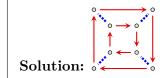
Note: Recall that a left coset of H in \mathbb{Z}_6 is the set $g + H = \{g + h : h \in H\}$. Note: You can use the Cayley graph from above question to help you, but you don't have to.

3. What is the index of $H = \{0, 3\}$ in \mathbb{Z}_6 ? (fill in the correct square)

Solution: 3

Note: Recall that the index $[\mathbb{Z}_6: H]$ is the number of left cosets of H in \mathbb{Z}_6 .

4. Circle the Cayley graph below which is the correct graph for the direct product $\mathbb{Z}_2 \times \mathbb{Z}_4$ with generating set consisting of the elements (1,0) and (0,3).



If you finish the quiz early, work on the following problem. (This page will not be graded.)

Let G denote the direct product $\mathbb{Z}_3 \times \mathbb{Z}_2$.

(a.) List all elements of the orbit of the element (1,1) in G. Recall that the orbit of an element x is the cyclic subgroup generated by x.

Solution: The orbit of (1, 1) is in fact the entire $\mathbb{Z}_3 \times \mathbb{Z}_2$.

(b.) Draw the Cayley diagram of $\langle (1,1) \rangle$ using (1,1) as a generator.

