Student ID: _____

Abstract Algebra Individual Quiz 4

Page 1 of 2

1. Write (37) as a finite product of transpositions from the following list: (12), (23), (34), (45), (56), (67).

Solution: (37) = (34)(45)(56)(67)(56)(45)(34)

2. Write down all permutations in the alternating group A_3 .

Solution:		
• Id		
• (123)		
• (321)		

3. What is th	ne index of A_3	in S_3 ? (fill in the co	orrect square)			
$\Box 1$	$\Box 2$	□ 3!	□ 4!	$\Box \infty$		
Solution: By Lagrange's theorem, the index $[S_3 : A_3]$ is $\frac{ S_3 }{ A_3 } = \frac{3!}{3} = 2$						

4. Let G be a group, let H be a subgroup of G, and let $a, b \in G$. Prove that if $a^{-1}b \in H$ then $b \in aH$.

Solution: Suppose $a^{-1}b \in H$. Then $a^{-1}b = h$ for some $h \in H$. This means $b = ah \in aH$.

If you finish the quiz early, work on the following problem. It will come up in the future. (This page will not be graded)

Let G be a group, let H be a subgroup of G, and $g \in G$. Prove the following:

If gH = Hg then $ghg^{-1} \in H$ for all $h \in H$.

Solution: Suppose gH = Hg.

Let $h \in H$. Then $gh \in gH$ by definition.

Since gH = Hg by assumption, $gh \in Hg$. So gh = kg for some $k \in H$. Then $ghg^{-1} = k \in H$.

Give an example of a subgroup H of S_3 and $g \in S_3$ such that gH is not equal to Hg.

Compute the index $[S_3:H]$ for your chosen H.