Abstract Algebra Individual Quiz 2

Recall that U(5) is the group of units in \mathbb{Z}_5 with multiplication module 5 as binary operation, that is,

 $U(5) = \{x \in \mathbb{Z}_5 : x \text{ and } 5 \text{ are relatively prime, meaning } gcd(x, 5) = 1\}$

1 Complete the Cayley table for the group U(5).

•	1	2	3	4
1			3	
2			1	
3			4	
4			2	

	•	1	2	3	4
	1	1	2	3	4
Solution:	2	2	4	1	3
	3	3	1	4	2
	4	4	3	2	1

2 Compute the order of each element in the group U(5).

1.

2.

3.

4.

Solution:			
The order of each element: $ 1 = 1$	2 = 4	3 = 4	4 = 2

3 Groups of order 8

Consider the group \mathbb{Z}_8 (with addition modulo 8 as group operation), and the "square mattress group" D_4 which is the symmetry group of the regular 4-gon.

Explain why \mathbb{Z}_8 and D_4 do not have the same group structure.

Solution:

A possible explanation: The group \mathbb{Z}_8 is abelian because addition modulo 8 is commutative. The group D_4 is not abelian because, for example, rotation by 90° does not commute with any of the flips.

Another possible explanation: The group \mathbb{Z}_8 has only one element of order two, the element 4. The group D_4 has five elements of order two: all four flips, and the rotation by 180° .