1 Question

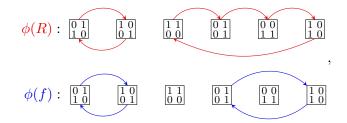
Let G be a group and let $a_1, a_2, \ldots, a_k \in G$. What does it mean to say that G is generated by a_1, a_2, \ldots, a_k ?

2 Question

Consider the group $G = D_4$. Let R be the counterclockwise rotation by 90°, and f the horizontal flip (that is, the reflection with respect to a vertical mirror). Then our G can be generated by R and f.

Let
$$X = \left\{ \begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}, \begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}, \begin{array}{ccc} 1 & 1 \\ 0 & 0 \end{array}, \begin{array}{cccc} 0 & 1 \\ 0 & 1 \end{array}, \begin{array}{cccc} 0 & 1 \\ 0 & 1 \end{array}, \begin{array}{cccc} 1 & 0 \\ 1 & 1 \end{array} \right\} \right\}$$

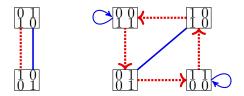
Let $\phi: D_4 \to \operatorname{Perm}(X)$ be the group homomorphism which sends each motion $g \in D_4$ to the permutation of X resulted from applying g to the all squares. For example, below are visual representations of the permutations $\phi(R)$ and $\phi(f)$:



Draw the permutation $\phi(Rf)$ using the same "cycle notation". Recall that we read from right to left, so Rf is the result of applying the flip f and then the rotation R.

3 Question

The following is the action diagram (of the previous group action) using the generators R, f of D_4 :



(a) Draw the action diagram using the generators f and g of D_4 , where g is the diagonal flip which swaps the northeast and southwest corners. (Hint: is it true that g = Rf?)

(b) For shorthand, think of the squares in X as 1, 2, 3, 4, 5, 6. Now we can write $\phi(R) = (12)(3456)$ and $\phi(f) = (12)(46)$ and $\phi(Rf) = (34)(56)$. Write $\phi(g)$ in this cycle notation for the other 5 elements $g \in D_4$.

(c) What familiar group is $\phi(G)$?

4 Question

(a) Finish calculating the left regular representation of $U(12) = \{1, 5, 7, 11\}$.

• *T*₇

• *T*₁₁

(b) What familiar abelian group is U(12)?

5 Question (Linear Algebra Example)

Consider the example of how $GL_2(\mathbb{R})$ acts on $X = \mathbb{R}^2$ by left multiplication. Describe this same action using the alternative definition

 $\phi: GL_2(\mathbb{R}) \to \operatorname{Perm}(\mathbb{R}^2).$