First & Last Name:	Student ID:	
First & Last Name:	Student ID:	
First & Last Name:	Student ID:	
First & Last Name:	Student ID:	

1. Let $S = \{1, 2, 3\}$. Consider the bijections $f : S \to S$ and $g : S \to S$.

- 1. Compute the following
 - (a) the composition $f \circ g$
 - (b) the composition $g \circ f$
 - (c) the inverse f^{-1} of f
 - (d) the inverse g^{-1} of g
- 2. Write down all other bijections from S to itself (match each function to its inverse function)

- 3. Let G be the set of all bijections from the set S to itself. Then the set G together with the function composition \circ forms a group.
 - (a) What is the identity element?
 - (b) Given an element $h \in G$, what is the inverse of h?
 - (c) Is (G, \circ) an abelian group?

2. Give (and explain) two reasons why the set of odd integers under addition is not a group.

3. Below is a Cayley table for a group. Fill in the blank entries.

\star	e	a	b	С	d
e	e				
a		b			е
b		С	d	е	
С		d		a	b
d					