Section 16.4 Part I: Maximal ideals

1 Question

Demonstrate that the ideal $10\mathbb{Z}$ is not a maximal ideal of \mathbb{Z} by providing another ideal J of \mathbb{Z} which properly contains $10\mathbb{Z}$.

Solution: The ideal $5\mathbb{Z}$ properly contains $10\mathbb{Z}$.

2 Question

The quotient ring $\mathbb{R}[x]/\langle x-3\rangle$ is isomorphic to \mathbb{R} by applying the 1st isomorphism theorem using the evaluation homomorphism

 $\varphi : \mathbb{R}[x] \to \mathbb{R}$ defined by $p(x) \mapsto p(3).$

Solution: The kernel of φ is the principal ideal $\langle x - 3 \rangle$ generated by x - 3. The image of φ is \mathbb{R} , since for any $r \in \mathbb{R}$, the constant polynomial f(x) = r is sent to r by φ . By the 1st isomorphism theorem, $\mathbb{R}[x]/\langle x - 3 \rangle$ is isomorphic to \mathbb{R} .

Apply Theorem 16.35 to this situation. What can you say about the principal ideal $\langle x - 3 \rangle$? Is it a maximal ideal in $\mathbb{R}[x]$?

Solution: Since \mathbb{R} is a field, the quotient ring $\mathbb{R}[x]/\langle x-3 \rangle$ is a field. Because of Theorem 16.35, the ideal $\langle x-3 \rangle$ is maximal in $\mathbb{R}[x]$.

3 Question

We demonstrated that the ideal $\langle x \rangle$ of $\mathbb{Z}[x]$ is *not* maximal by providing another ideal $J = \{f(x) \in \mathbb{Z}[x] : f(0) \text{ is an even integer}\}$ such that $\langle x \rangle \subsetneq J$. For example, $x + 8 \in J$ but $x + 8 \neq \langle x \rangle$.

Let's now give an alternative explanation for why $\langle x \rangle$ is not a maximal ideal of $\mathbb{Z}[x]$.

The quotient ring $\mathbb{Z}[x]/\langle x \rangle$ is isomorphic to \mathbb{Z} by applying the 1st isomorphism theorem using the evaluation homomorphism

$$\varphi : \mathbb{Z}[x] \to \mathbb{Z}$$
 defined by $p(x) \mapsto p(0).$

Solution: The kernel of φ is the principal ideal $\langle x \rangle$ generated by x. The image of φ is \mathbb{Z} , since for any $z \in \mathbb{Z}$, the constant polynomial f(x) = z is sent to z by φ . By the 1st isomorphism theorem, $\mathbb{R}[x]/\langle x - 3 \rangle$ is isomorphic to \mathbb{R} .

Apply Theorem 16.35 to this situation. What can you say about the principal ideal $\langle x \rangle$? Is it a maximal ideal in $\mathbb{Z}[x]$?

Solution: Since \mathbb{Z} is not a field, the quotient ring $\mathbb{R}[x]/\langle x-3\rangle$ is not a field. Because of Theorem 16.35, the ideal $\langle x-3\rangle$ is *not* maximal in $\mathbb{Z}[x]$.

4 Question

Note: Question 3 tells us that the principal ideal $I = \langle x \rangle = \{f(x)x : f(x) \in \mathbb{Z}[x]\}$ is not a maximal ideal of $\mathbb{Z}[x]$. However, the principal ideal $J = \langle x \rangle = \{f(x)x : f(x) \in \mathbb{R}[x]\}$ is a maximal ideal of $\mathbb{R}[x]$.

Prove that J is a maximal ideal of $\mathbb{R}[x]$.

Solution: Consider the evaluation homomorphism $\varphi : \mathbb{R}[x] \to \mathbb{R}$ defined by $p(x) \mapsto p(0).$

The kernel of φ is the principal ideal $\langle x \rangle$ generated by x. The image of φ is \mathbb{R} , since for any $r \in \mathbb{R}$, the constant polynomial f(x) = r is sent to r by φ . So, by the 1st isomorphism theorem, $\mathbb{R}[x]/\langle x \rangle$ is isomorphic to \mathbb{R} .

Since \mathbb{R} is a field, the quotient ring $\mathbb{R}[x]/\langle x \rangle$ is a field. Because of Theorem 16.35, the ideal $\langle x \rangle$ is maximal in $\mathbb{R}[x]$.

Section 16.4 Part II: Prime ideals

5 Question

Prove that $\langle x - 4 \rangle$ is a prime ideal of $\mathbb{Z}[x]$.

Solution: Copy the example in week 14 notes (showing directly that $\langle x \rangle$ is a prime ideal of $\mathbb{Z}[x]$). We now have $\langle x - 4 \rangle = \{g(x) \in \mathbb{Z}[x] : g(4) = 0\}$.

6 Question

Let R be a commutative ring with unity 1. Prove that if I is a maximal ideal of R, then I is also a prime ideal of R.

7 Question

(a) Write the definition of a prime ideal.

(b) Demonstrate that $6\mathbb{Z}$ is not a prime ideal of \mathbb{Z} . (Hint: find a pair of elements a, b such that $ab \in 6\mathbb{Z}$ but $a \notin 6\mathbb{Z}$ and $b \notin 6\mathbb{Z}$.)

Solution: a = 40, b = 21 work. a = 22, b = 3 also work. The simplest choices would be a = 2, b = 3.