1 Isomorphism

Consider the map $\varphi : \mathbb{C} \to \mathbb{C}$ defined by

$$\varphi(a+bi) = a - bi$$

(i) Prove that φ preserves addition.

Solution: Suppose x = a + bi, y = c + di, where $a, b, c, d \in \mathbb{R}$. Then

$$\begin{split} \varphi(x+y) &= \varphi(a+bi+c+di) \\ &= \varphi((a+c)+(b+d)i) \\ &= (a+c)-(b+d)i \\ &= (a-bi)+(c-di) \\ &= \varphi(a+bi)+\varphi(c+di) \\ &= \varphi(x)+\varphi(y). \end{split}$$

(ii) Prove that φ is surjective.

Solution: Suppose $z \in \mathbb{C}$. Then z = a + bi for some $a, b \in \mathbb{R}$. Then $a - bi \in \mathbb{C}$ such that $\varphi(a - bi) = a + bi = z$.

2 Evaluation homomorphism

Let $\mathbb{Z}[x]$ denote the ring of all polynomials having integer coefficients. Consider the evaluation homomorphism $\text{ev} : \mathbb{Z}[x] \to \mathbb{R}$ defined by

$$p(x) \mapsto p(2)$$

(a) What is the kernel of ev?

Solution: The set of integer polynomials with root 2.

(b) What is the image of ev?

Solution: The ring of integers \mathbb{Z} .

3 Matrices with integer entries

Definition 1. Consider the set

$$\operatorname{Mat}_{2}(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\}$$

of 2×2 matrices with integer entries. It forms a ring with unity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ under the usual matrix addition and matrix multiplication. The zero element is the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Let I be the subset of $Mat_2(\mathbb{Z})$ consisting of matrices with even entries. Prove that

I is an ideal of $Mat_2(\mathbb{Z})$.

(You need to show that:

- I is an additive subgroup of $Mat_2(\mathbb{Z})$
- I "absorbs" all elements of $Mat_2(\mathbb{Z})$, that is, for all $a \in I$ and $r \in Mat_2(\mathbb{Z})$, we have $ar \in I$ and $ra \in I$.)

4 An ideal of the ring of integer polynomials?

Let $\mathbb{Z}[x]$ denote the ring of all polynomials having integer coefficients. Consider the subset T of $\mathbb{Z}[x]$ of polynomials f(x) such that f(0) = 5.

- (a) What do the polynomials in S look like? Give some examples.
- (b) Is T an ideal?

Solution: No, it's not even a subring. For example, f(x) = x + 5 is in T, but the product $f(x)f(x) = x^2 + 10x + 25$ is not in T.

(c) If T is a principal ideal, describe an element of T which generates T.

Solution: T is not an ideal.

5 Ideals?

Let $\mathbb{Z}[x]$ denote the ring of all polynomials having integer coefficients. Which of the following subsets of $\mathbb{Z}[x]$ are ideals? Answer **Yes** or **No**.

- If you answer No, provide a specific example of how the subset fails the absorbing property of an ideal or how the subset fails to be an additive subgroup of $\mathbb{Z}[x]$.
- If you answer Yes, explain why the absorbing property holds (you don't need to prove that the subset is an additive group).

(a) S is the set consisting of the constant zero function and of all polynomials with no constant term.

Solution: Yes, S can be written in set-builder notation as $\{f(x)x : x \in \mathbb{Z}[x]\}$, which shows that S is the principal ideal generated by the polynomial x. Notation: $\langle x \rangle$. Note that we don't need to do the "ideal test" because we see that S is a principal ideal

(and therefore an ideal).

(b) $S = \mathbb{Z}$, that is, all the constant polynomials in $\mathbb{Z}[x]$.

Solution: S is not an ideal because it fails the absorbing property. For example, f(x) = 5 is a polynomial in S and $g(x) = x^2$ is a polynomial in $\mathbb{Z}[x]$, but their product is $5x^2$ which is not in S.

(c) The set S of integer polynomials f(x) such that $f(5) \neq 0$, i.e. 5 is not a root of f(x).

Solution: S is not an ideal because it fails the absorbing property. For example, $f(x) = x^2$ is a polynomial in S and g(x) = (x - 5) is a polynomial in $\mathbb{Z}[x]$, but their product is $(x - 5)x^2$ which is not in S.

(d) The set S of integer polynomials f(x) such that f'(2) = 0, i.e. 2 is a root of f'(x).

Solution: S is not an ideal because it fails the "absorbing" property. For example, $f(x) = x^2 - 4x$ is a polynomial in S (since f'(x) = 2x - 4), and g(x) = x is a polynomial in $\mathbb{Z}[x]$, however, their product is $x^3 - 4x^2$ which has derivative $3x^2 - 4x$ which is not in S.

6 An ideal of the ring of integers

Consider the subset

 $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\} = \{..., -2n, -n, 0, n, 2n, ...\}$

of the ring \mathbb{Z} of integers.

Is $n\mathbb{Z}$ an ideal? Is $n\mathbb{Z}$ a principal ideal? If it is, describe an element of $n\mathbb{Z}$ which generates $n\mathbb{Z}$ Hint: See Example 16.26 in Judson Section 16.3 Ring homomorphisms and ideals

Solution: $n\mathbb{Z} = \langle n \rangle$ is the principal ideal generated by n.