1 Isomorphism

Consider the map $\varphi : \mathbb{C} \to \mathbb{C}$ defined by

$$\varphi(a+bi) = a - bi$$

(i) Prove that φ preserves addition.

(ii) Prove that φ is surjective.

2 Evaluation homomorphism

Let $\mathbb{Z}[x]$ denote the ring of all polynomials having integer coefficients. Consider the evaluation homomorphism $\text{ev} : \mathbb{Z}[x] \to \mathbb{R}$ defined by

$$p(x) \mapsto p(2)$$

(a) What is the kernel of ev?

(b) What is the image of ev?

3 Matrices with integer entries

Definition 1. Consider the set

$$\operatorname{Mat}_{2}(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\}$$

of 2×2 matrices with integer entries. It forms a ring with unity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ under the usual matrix addition and matrix multiplication. The zero element is the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Let I be the subset of $Mat_2(\mathbb{Z})$ consisting of matrices with even entries. Prove that

$$I$$
 is an ideal of $Mat_2(\mathbb{Z})$.

(You need to show that:

- I is an additive subgroup of $Mat_2(\mathbb{Z})$
- I "absorbs" all elements of $Mat_2(\mathbb{Z})$, that is, for all $a \in I$ and $r \in Mat_2(\mathbb{Z})$, we have $ar \in I$ and $ra \in I$.)

4 An ideal of the ring of integer polynomials?

Let $\mathbb{Z}[x]$ denote the ring of all polynomials having integer coefficients. Consider the subset T of $\mathbb{Z}[x]$ of polynomials f(x) such that f(0) = 5.

- (a) What do the polynomials in S look like? Give some examples.
- (b) Is T an ideal?
- (c) If T is a principal ideal, describe an element of T which generates T.

5 Ideals?

Let $\mathbb{Z}[x]$ denote the ring of all polynomials having integer coefficients. Which of the following subsets of $\mathbb{Z}[x]$ are ideals? Answer **Yes** or **No**.

- If you answer No, provide a specific example of how the subset fails the absorbing property of an ideal or how the subset fails to be an additive subgroup of $\mathbb{Z}[x]$.
- If you answer Yes, explain why the absorbing property holds (you don't need to prove that the subset is an additive group).
- (a) S is the set consisting of the constant zero function and of all polynomials with no constant term.
- (b) $S = \mathbb{Z}$, that is, all the constant polynomials in $\mathbb{Z}[x]$.
- (c) The set S of integer polynomials f(x) such that $f(5) \neq 0$, i.e. 5 is not a root of f(x).
- (d) The set S of integer polynomials f(x) such that f'(2) = 0, i.e. 2 is a root of f'(x).

6 An ideal of the ring of integers

Consider the subset

$$n\mathbb{Z} = \{nk: k \in \mathbb{Z}\} = \{..., -2n, -n, 0, n, 2n, ...\}$$

of the ring $\mathbb Z$ of integers.

Is $n\mathbb{Z}$ an ideal? Is $n\mathbb{Z}$ a principal ideal? If it is, describe an element of $n\mathbb{Z}$ which generates $n\mathbb{Z}$ Hint: See Example 16.26 in Judson Section 16.3 Ring homomorphisms and ideals