Abstract Algebra week 11 practice

Reference: Week 10 class notes, Textbook's Section 16.1 and Textbook's Section 16.2)

1 Definitions

Write down the definition of ...

- zero element
- unity (or identity)
- ring
- commutative ring
- ring with unity (or ring with identity)
- integral domain
- field
- zero divisor
- unit

2 Gaussian integers

- (a) Write down the definition of the set $\mathbb{Z}[i]$ of the Gaussian integers.
- (b) Is $\mathbb{Z}[i]$ a subring of the ring of complex numbers (under usual addition and multiplication)?

Solution: Yes. All four properties of being a subring are satisfied.

(c) Is $\mathbb{Z}[i]$ a commutative ring?

Solution: Yes because \mathbb{C} is a commutative ring.

(d) Is $\mathbb{Z}[i]$ an integral domain?

Solution: See class notes or Example 16.12 Textbook's Section 16.2

(e) What are the units of $\mathbb{Z}[i]$?

Solution: See class notes or Example 16.12 Textbook's Section 16.2

(f) Is $\mathbb{Z}[i]$ a field?

Solution: No because not all nonzero elements are units. (A field is a commutative ring with unity such that every nonzero elements are units.)

3 Question

Definition 1. Consider the set

$$\operatorname{Mat}_{2}(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\}$$

of 2×2 matrices with integer entries. It forms a (non-commutative) ring with unity under the usual matrix addition and matrix multiplication. The unity of $Mat_2(\mathbb{Z})$ is the identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and the zero element is the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

For each of the following subsets S of $Mat_2(\mathbb{Z})$, answer whether S is a subring of $Mat_2(\mathbb{Z})$. (Answer Yes/ No)

If you claim S is not a subring, specify which subring conditions are not satisfied (S doesn't contain the zero element; S is not closed under ring addition; S is not closed under ring negation; S is not closed under ring multiplication)

(a) S is the subset of $Mat_2(\mathbb{Z})$ consisting of invertible matrices.

Solution: No, S is not a subring. It is closed under ring multiplication, but it fails the other three properties: S doesn't contain the zero element; S is not closed under ring addition; S is not closed under ring negation.

(b) $S = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} : a, c, d \in \mathbb{Z} \right\}$ is the subset of lower-triangular matrices in $Mat_2(\mathbb{Z})$.

Solution: Yes, S is a subring. All four properties are satisfied.

(c) $S = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ is the subset of diagonal matrices in $\operatorname{Mat}_2(\mathbb{Z})$.

Solution: Yes, S is a subring. All four properties are satisfied.

4 Question

Definition 2. Let R be a ring which has unity denoted by the symbol **1**. An element $u \in R$ is called a *unit* (also called an *invertible element*) if there exists $v \in R$ such that $uv = vu = \mathbf{1}$.

What are the units (if any) in the ring \mathbb{Z}_{10} ?

(Hint: Example 3.11 in Section 3.2 Groups: Definitions and Examples computes the units for $\mathbb{Z}_8.)$

Solution: The units are the nonzero elements which are relatively prime to 10:

1, 3, 7, 9

A notation that we have used all semester for this set of units is U(10).

5 Fields

For this question, use the definition and choose examples from class notes or Textbook's Section 16.2 or Section 16.1.

(a) Give an example of an infinite field.

Solution: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$

(b) Give an example of a finite field.

Solution: See Example 16.17 Textbook's Section 16.2. For each prime p, the ring \mathbb{Z}_p is a field. See also Example 16.13.

6 Question

Suppose R is a ring with unity 1. Prove the following: if $x^4 = 0$ then 1 - x is a unit.

```
Solution: Let v = 1 + x + x^2 + x^3. Then we have

(1-x)v = (1-x)(1+x+x^2+x^3)

= 1 + x + x^2 + x^3 - x(1+x+x^2+x^3)

= 1 - x^4

= 1 since x^4 = 0
```

7 Question

- (a) Write down the definition of a zero divisor. (Use class notes or Textbook's Section 16.2 or Section 16.1)
- (b) What are the zero divisors (if any) of the ring \mathbb{Z}_{10} ?

Solution: All the nonzero elements which are not units, 2,4,5,6,8, are zero divisors. For example, 4 is a zero divisor because (4)(5) = 0.

8 Question

Definition 3. Let R be a ring. An element x in R is called an *idempotent* if it satisfies $x^2 = x$.

What are the idempotents in \mathbb{Z}_6 ? (Hint: For each of the elements r in \mathbb{Z}_6 , simply check whether $r^2 = r$.)

Solution: The idempotents in \mathbb{Z}_6 are 0, 1, 3, 4. The computation is below: 0 is an idempotent, since $0^2 = 0$ 1 is an idempotent, since $1^2 = 1$ 2 is not an idempotent, since $2^2 = 4 \neq 2$ 3 is an idempotent, since $3^2 = 3$ 4 is an idempotent, since $4^2 = 4$ 5 is not an idempotent, since $5^2 = 1 \neq 5$

9 Question

- (a) Write down the definition of the characteristic of a ring. (Use class notes or Textbook's Section 16.2)
- (b) Write down the statement and proof of Lemma 16.18 from Textbook's Section 16.2
- (c) What is the characteristic of the ring \mathbb{R} of real numbers?

Solution: The order of the unity element 1 is infinite, so the characteristic of the ring is 0.

(d) What is the characteristic of the ring \mathbb{Z}_6 ?

Solution: The order of the unity element 1 is 6, so the characteristic of \mathbb{Z}_6 is 6.