Abstract Algebra week 11 practice

Reference: Week 10 class notes, Textbook's Section 16.1 and Textbook's Section 16.2)

1 Definitions

Write down the definition of ...

- zero element
- unity (or identity)
- ring
- commutative ring
- ring with unity (or ring with identity)
- integral domain
- field
- zero divisor
- unit

2 Gaussian integers

- (a) Write down the definition of the set $\mathbb{Z}[i]$ of the Gaussian integers.
- (b) Is $\mathbb{Z}[i]$ a subring of the ring of complex numbers (under usual addition and multiplication)?
- (c) Is $\mathbb{Z}[i]$ a commutative ring?
- (d) Is $\mathbb{Z}[i]$ an integral domain?
- (e) What are the units of $\mathbb{Z}[i]$?
- (f) Is $\mathbb{Z}[i]$ a field?

3 Question

Definition 1. Consider the set

$$\operatorname{Mat}_{2}(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\}$$

of 2×2 matrices with integer entries. It forms a (non-commutative) ring with unity under the usual matrix addition and matrix multiplication. The unity of $Mat_2(\mathbb{Z})$ is the identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and the zero element is the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

For each of the following subsets S of $Mat_2(\mathbb{Z})$, answer whether S is a subring of $Mat_2(\mathbb{Z})$. (Answer Yes/ No)

If you claim S is not a subring, specify which subring conditions are not satisfied (S doesn't contain the zero element; S is not closed under ring addition; S is not closed under ring negation; S is not closed under ring multiplication)

(a) S is the subset of $Mat_2(\mathbb{Z})$ consisting of invertible matrices.

(b)
$$S = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} : a, c, d \in \mathbb{Z} \right\}$$
 is the subset of lower-triangular matrices in Mat₂(Z).
(c) $S = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ is the subset of diagonal matrices in Mat₂(Z).

4 Question

Definition 2. Let R be a ring which has unity denoted by the symbol 1. An element $u \in R$ is called a *unit* (also called an *invertible element*) if there exists $v \in R$ such that uv = vu = 1.

What are the units (if any) in the ring \mathbb{Z}_{10} ? (Hint: Example 3.11 in Section 3.2 Groups: Definitions and Examples computes the units for \mathbb{Z}_8 .)

5 Fields

For this question, use the definition and choose examples from class notes or Textbook's Section 16.2 or Section 16.1.

- (a) Give an example of an infinite field.
- (b) Give an example of a finite field.

6 Question

Suppose R is a ring with unity 1. Prove the following: if $x^4 = 0$ then 1 - x is a unit.

7 Question

- (a) Write down the definition of a zero divisor. (Use class notes or Textbook's Section 16.2 or Section 16.1)
- (b) What are the zero divisors (if any) of the ring \mathbb{Z}_{10} ?

8 Question

Definition 3. Let R be a ring. An element x in R is called an *idempotent* if it satisfies $x^2 = x$.

What are the idempotents in \mathbb{Z}_6 ? (Hint: For each of the elements r in \mathbb{Z}_6 , simply check whether $r^2 = r$.)

9 Question

- (a) Write down the definition of the *characteristic* of a ring. (Use class notes or Textbook's Section 16.2)
- (b) Write down the statement and proof of Lemma 16.18 from Textbook's Section 16.2
- (c) What is the characteristic of the ring \mathbb{R} of real numbers?
- (d) What is the characteristic of the ring \mathbb{Z}_6 ?