1 First isomorphism theorem (statement)

Let $f: G \to H$ be a homomorphism of groups. What does the first isomorphism theorem say?

2 First isomorphism theorem (example)

Let D_4 be the dihedral group of order 8

$$
D_4 = \{e, R, R^2, R^3,
$$

$$
f, fR, fR^2, fR^3\}
$$

and let

 $V_4 = \{Id, h, v, r\}$

be the (non-square) rectangle mattress group. Consider the homomorphism $\phi : D_4 \to V_4$ where $\phi(R) = h$ and $\phi(f) = v$.

(a) Using the homomorphism property $\phi(ab) = \phi(a)\phi(b)$, find where ϕ sends all elements of D_4 .

Solution: For example,

$$
\phi(R^3) = \phi(R)\phi(R)\phi(R) = hhh = eh = h,
$$

and

$$
\phi(fR) = \phi(f)\phi(R) = vh = r.
$$

Compute where ϕ sends the rest of the elements.

- (b) Find ker(ϕ).
- (c) Is ϕ injective? If not, state whether it is a 2-to-1 or 4-to-1 or 8-to-1 mapping.

Solution: No, ker(ϕ) = { e, R^2 } has cardinality 2, so ϕ is a two-to-one mapping.

(d) Pick a coset of ker(ϕ) not equal to ker(ϕ), for example, $R \text{ker}(\phi)$ or $f \text{ker}(\phi)$. Write down all elements of this coset, and then demonstrate that ϕ sends all elements of this coset to the same element in the codomain V_4 . Write this coset as the fiber of an element in the image of ϕ .

Solution: For example, the coset $R \text{ ker}(\phi)$ is equal to $\{R, R^3\}$. Both elements in this coset are sent to h by ϕ . We can write the coset $R \text{ ker}(\phi)$ as the fiber $\phi^{-1}(\lbrace h \rbrace)$.

(e) Find Im(ϕ).

(f) What does the first isomorphism theorem tells us about ϕ ?

Solution: $D_4/\langle R^2 \rangle$ is isomorphic to $\text{Im}(\phi) = V_4$.

3 First isomorphism theorem (conceptual)

- (a) Given a homomorphism $f: G \to H$, how can you construct a normal subgroup of G using f?
- (b) Given a normal subgroup N of G, how can you construct a homomorphism whose domain is G and whose kernel is N ?

Solution: The natural (or canonical) homomorphism $f : G \to G/N$ given by $x \mapsto xN$ has N as its kernel.

4 Fundamental Theorem of Finite Abelian Groups

Apply the Fundamental Theorem of Finite Abelian Groups [\(Judson Section 13.1\)](http://abstract.ups.edu/aata/struct-section-finite-abelian-groups.html) to answer these.

(a) True or false? The group D_{12} is isomorphic to the group $\mathbb{Z}_3 \times \mathbb{Z}_4$

Solution: False. The dihedral group D_{12} is not abelian.

(b) Which nontrivial direct product is \mathbb{Z}_{12} isomorphic to?

Solution: $\mathbb{Z}_4 \times \mathbb{Z}_3$

(c) True or false? The group \mathbb{Z}_{14} is isomorphic to the group $\mathbb{Z}_2 \times \mathbb{Z}_7$

Solution: True because the $gcd(2, 7) = 1$. Alternatively, you can use $(1, 1) \in \mathbb{Z}_2 \times \mathbb{Z}_7$ to generate the entire group and thus showing that it is a cyclic group of order 14.

(d) True or false? The group \mathbb{Z}_{16} is isomorphic to the group $\mathbb{Z}_4 \times \mathbb{Z}_4$

Solution: False because the $gcd(4, 4) = 4$. See week 9 class notes on "Fundamental theorem of finite abelian groups".

Alternatively, you can check that every element in the group \mathbb{Z}_4 has order 1, 2, or 4, so every element in $\mathbb{Z}_4 \times \mathbb{Z}_4$ also has order 1, 2, or 4, and thus no element can generate the entire group.

 \Box

5 A subgroup

Prove that the subset

$$
Z(G) = \{ a \in G : ax = xa \text{ for all } x \in G \}
$$

of G is a subgroup of G .

Solution:

Proof. To show that $Z(G)$ is a subgroup, we need to show the following: (1) The identity e of G is contained in $Z(G)$; (2) the subset $Z(G)$ is closed under the group operation of G; and (3) the subset $Z(G)$ is closed under taking inverses.

- (1) The identity e is in $Z(G)$ because $ex = e = xe$ for all $x \in G$ by definition of the identity element.
- (2) To show that the subset $Z(G)$ is closed under the group operation, we need to show that if $a, b \in \mathbb{C}$ $Z(G)$ then $ab \in Z(G)$.

Suppose $a, b \in Z(G)$. (Our goal is to show that $ab \in Z(G)$, that is, $(ab)x = x(ab)$ for all $x \in G$.) Let $x \in G$. Then we have

$$
(ab)x = a(bx)
$$

= $a(xb)$ since b is in $Z(G)$
= $(ax)b$
= $(xa)b$ since a is in $Z(G)$
= $x(ab)$

This concludes the proof that $ab \in Z(G)$.

(3) To show that the subset $Z(G)$ is closed under taking inverses, we need to show that if $a \in Z(G)$ then its inverse a^{-1} is also in $Z(G)$.

Suppose $a \in Z(G)$. (Our goal is to show that $a^{-1} \in Z(G)$), that is, $a^{-1}x = xa^{-1}$ for all $x \in G$.) Let $x \in G$. Then we have

$$
xa=ax,
$$

since $a \in Z(G)$. Multiply on the left and on the right by a^{-1} :

$$
a^{-1}(xa)a^{-1} = a^{-1}(ax)a^{-1}
$$

$$
(a^{-1}x)(aa^{-1}) = (a^{-1}a)(xa^{-1})
$$

$$
(a^{-1}x)e = e(xa^{-1})
$$

$$
a^{-1}x = xa^{-1},
$$

as needed.

6 Product of subgroups

Suppose G is a group, and $H \leq G$ and $N \leq G$. Prove that HN is a subgroup of G.

Solution: HW 09

7 Intersection of subgroups

Suppose that G is a group, and $H \leq G$ and $N \leq G$. Prove that $H \cap N$ is a normal subgroup of H.

Solution: HW 09

8 Computation

Let $G = S_4$, $H = \langle (1234) \rangle$, and $N = A_4$. Compute H, N, and $H \cap N$. Then use the fact that

 $H/(H \cap N) \cong (HN)/N$

to quickly compute HN . What is HN equal to?

Solution: HW 09

9 The First Isomorphism Theorem in words

Explain the first isomorphism theorem in words to a classmate who has not seen it before. Do not use any math symbol. You might enjoy reading the blog post

[The First Isomorphism Theorem, Intuitively](https://www.math3ma.com/blog/the-first-isomorphism-theorem-intuitively) by Tai-Danae Bradley (Math3ma).

10 Counting abelian groups

How many abelian groups of order $540 = 2^2 \cdot 3^3 \cdot 5$ are there, up to isomorphism? List all of them.

Solution: There are six isomorphism classes. They are given in [Judson Example 13.5](http://abstract.ups.edu/aata/struct-section-finite-abelian-groups.html) for an example on how to use the Fundamental Theorem of Finite Abelian Groups to count isomorphism classes of abelian groups.

11 First isomorphism theorem (another example)

Consider the homomorphism $f : \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ defined by

 $f(x) = 3x$.

(a) What is ker f? Is f injective? f is a t-to-one mapping for some positive integer. What is t?

Solution: f is a 3-to-one mapping, since ker $f = \{0, 4, 8\}$ is of order 3. It's not injective.

(b) Find all cosets of ker f .

Solution: Since \mathbb{Z}_{12} has 12 elements and ker f has three, there should be four cosets. Let K denote ker f. Two of the cosets are K itself and $2 + K = \{2, 6, 10\}$. Find the other two cosets.

(c) Consider the coset $2 + \text{ker } f$. Find all elements of this coset.

Solution: The coset $2 + \text{ker } f$ is equal to $\{2, 6, 10\}$

- (d) Find all elements in the fiber $f^{-1}(\{6\})$.
- (e) True or false? The fiber $f^{-1}(\{6\})$ is a coset of ker f.

Solution: True. $f^{-1}(\{6\}) = \{2, 6, 10\}$, which is the coset $2 + \ker f$. Note: In fact, we saw in class that every fiber $f^{-1}(\{y\})$ is a coset of ker f, for every $y \in \text{Im } f$.

(f) What is Imf? What does the first isomorphism theorem tells us about ϕ ?

Solution: Imf={3, 6, 9, 0} The quotient group $\mathbb{Z}_{12}/\{0, 4, 8\}$ is isomorphic to {3, 6, 9, 0}, which is a cyclic group of order 4.

12 First isomorphism theorem (yet another example)

Recall that \mathbb{R}^* denotes the set of nonzero real numbers equipped with usual multiplication as the binary operation. Consider the homomorphism $f : \mathbb{R}^* \to \mathbb{R}^*$ defined by

 $f: x \mapsto x^2$

(a) What is ker f ?

Solution: $\{1, -1\}$

- (b) Is f injective? If not, state whether it is a 2-to-1, or 3-to-1, or 4-to-1 mapping, etc.
- (c) Pick a coset of ker(f) not equal to ker(f), for example, $2 \text{ker}(\phi)$ or $(-3) \text{ker}(\phi)$. Write down all elements of this coset, and then demonstrate that f sends all elements of this coset to the same element in the image of f . Write this coset as the fiber of an element in $\text{Im } f$.

Solution: Let K denote the kernel of f. For example, the coset $(-3)K$ is equal to $\{-3,3\}$. Both elements in this coset are sent to 9 by f. So we can write the coset $(-3)K$ as the fiber $f^{-1}(\{9\})$.

(d) What is $\text{Im} f?$

Solution: $\mathbb{R}^*_{>0}$, the subgroup of \mathbb{R}^* consisting of all positive real numbers.

(e) What does the first isomorphism theorem tells us about ϕ ?

Solution: The quotient group $\mathbb{R}^*/\{1,-1\}$ is isomorphic to $\mathbb{R}_{>0}^*$.

13 First isomorphism theorem (last example)

Recall that \mathbb{C}^* denotes the set of nonzero complex numbers equipped with usual multiplication as the binary operation. Consider the homomorphism $f: \mathbb{C}^* \to \mathbb{R}^*$ defined by

 $f: z \mapsto |z|$

Since $|a + bi|$ = √ $a^2 + b^2$, this is the same as saying that $f(a + bi) = \sqrt{a^2 + b^2}$ for all $a + bi \in \mathbb{C}^*$ You can use the fact that $|xy| = |x||y|$ for all complex numbers x, y.

(a) What is ker f ?

Solution: $\{z \in \mathbb{C}^* : |z|=1\}$, that is, the circle group \mathbb{T} .

- (b) Is f injective? If not, state whether it is a 2-to-1, or 3-to-1, or 4-to-1 mapping, etc.
- (c) Pick a coset of ker(f) not equal to ker(f), for example, $2 \text{ker}(\phi)$ or $3i \text{ker}(\phi)$. Write this coset as the fiber of an element in $\text{Im } f$.

Solution: Let K denote the kernel of f. For example, the coset $3iK$ is equal to $\{3iz : |z|=1\}$. So every element $3iz$ in this coset is sent to $f(3iz) = |3||i||z| = 3 \cdot 1 \cdot 1 = 3$. So $|3iK = f^{-1}(\{3\})|$.

(d) What is $\text{Im} f$?

Solution: $\mathbb{R}_{>0}^*$, the subgroup of \mathbb{R}^* consisting of all positive real numbers.

(e) What does the first isomorphism theorem tell us?

Solution: The quotient group \mathbb{C}^*/\mathbb{T} is isomorphic to $\mathbb{R}_{>0}^*$.