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1. Prove or disprove: The groups 4Z and 5Z are isomorphic.

Solution: True.

Proof: The group
4Z = {4k : k ∈ Z} = ⟨4⟩

is a cyclic group of infinite order, and

5Z = {5k : k ∈ Z} = ⟨5⟩

is also a cyclic group of infinite order.

Every infinite cyclic group is isomorphic to Z, so 4Z and 5Z are isomorphic.

An explicit isomorphism f : 4Z → 5Z can be given as follows: For each 4k ∈ 4Z, let

f(4k) = 5k.

2. Question:

If H and K are subgroups and H ∼= K, then are G/H and G/K isomorphic?

To answer this question, consider the group G := Z4 × Z2.

Below is the Cayley diagram for G with two generators,

(1, 0) (of order 4, solid arrow) and (0, 1) (of order 2, dotted edge):

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

We can visually demonstrate (using the above Cayley diagram) that the quotient of Z4×Z2

by the subgroup H = ⟨(0, 1)⟩ is the cyclic group Z4. To do this, collapse all the dotted edges
representing H.

(a) List all elements (cosets) in the quotient group G/H = (Z4 × Z2)/⟨ (0, 1) ⟩ (or circle
them).

Solution: The quotient group Z4 × Z2/⟨(0, 1)⟩ consists of the cosets

⟨(0, 1)⟩, (1, 0) + ⟨(0, 1)⟩, (2, 0) + ⟨(0, 1)⟩, (3, 0) + ⟨(0, 1)⟩
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(b) The quotient of G = Z4 × Z2 by the subgroup K = ⟨(2, 0)⟩ is a harder to see. List all
elements in the quotient group G/K.

Solution: The quotient group G/K = Z4 × Z2/⟨(2, 0)⟩ consists of the cosets

⟨(2, 0)⟩ , (1, 0) + ⟨(2, 0)⟩ , (0, 1) + ⟨(2, 0)⟩ , (1, 1) + ⟨(2, 0)⟩ .

(c) What familiar group is G/K = (Z4 × Z2)/⟨(2, 0)⟩ isomorphic to?

Solution: This group is of order 4, so it’s either isomorphic to Z4 or V4. We can
compute the order of all the non-identity elements:

((1, 0) + ⟨(2, 0)⟩) + ((1, 0) + ⟨(2, 0)⟩) = (2, 0) + ⟨(2, 0)⟩ = ⟨(2, 0)⟩ ,

so (1, 0) + ⟨(2, 0)⟩ has order 2.
Similarly, both

(0, 1) + ⟨(2, 0)⟩ ,

(1, 1) + ⟨(2, 0)⟩ .

have order 2.

So no element generates the entire group, so it’s not a cyclic group. Therefore, this
group is isomorphic to V4.

3. The center of a group G is the set

Z(G) = {z ∈ G | gz = zg, for all g ∈ G} = {z ∈ G | gzg−1 = z, for all g ∈ G} .

We proved in an earlier homework that Z(G) is a subgroup of G. Now, prove that Z(G) is
normal in G.

4. Let f : G → H be a group homomorphism. Prove that the subgroup ker f is normal in G.

Solution: Let K denote ker f . (We will show that gkg−1 ∈ K for all k ∈ K and g ∈ G.)

Let k ∈ K and g ∈ G. We have

f(gkg−1) = f(g) f(k) f(g−1) = f(g) e f(g)−1 = e,

where the second equality is due to the fact that k ∈ ker f and the fact that the inverse
of f(g) is f(g−1). Therefore, gkg−1 ∈ K.

5. Consider the alternating group A4 = ⟨(1 2 3), (1 2)(3 4)⟩.

(a) Find all conjugates of the cyclic subgroup H = ⟨(1 2 3)⟩, and state whether it is normal
in A4.

(b) Find all conjugates of the cyclic subgroup K = ⟨(1 2)(3 4)⟩, and state whether it is
normal in A4.
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6. The subgroup lattice ofD4 is shown here: D4

⟨r2, f⟩ ⟨r⟩ ⟨r2, rf⟩

⟨f⟩ ⟨r2f⟩ ⟨r2⟩ ⟨rf⟩ ⟨r3f⟩

⟨e⟩
For each of the 10 subgroups of D4, find all of its conjugates, and determine whether it is
normal in D4. Fully justify your answers. [Hint : do this without computing xHx−1 for any
subgroup H.]

Solution: Hint: The trivial group, the entire group, ⟨r2⟩, and the three subgroups of
order 4 are all normal, so the only conjugate of H from this list is H itself.

We only need to figure out the conjugate subgroups of the group of order 2 generated a
reflection. The reflections f and r2f are the same type, so they are in the same conjugacy
class. Hence the two conjugates of ⟨f⟩ are itself and ⟨r2f⟩. Similarly, the two conjugates
of ⟨r2f⟩ are itself and ⟨f⟩.
The two conjugates of ⟨rf⟩ are itself and ⟨r3f⟩. Similarly, the two conjugates of ⟨r3f⟩
are itself and ⟨rf⟩.

II: Consider a chain of subgroups K ≤ H ≤ G.

(a) Prove or disprove (with a counterexample): If K ⊴G, then K ⊴H.

Solution: Hint: This is true. Why?

(b) Prove or disprove (with a counterexample): If K ⊴H ⊴G, then K ⊴G.

Hint: Check whether this is true for D4 whose subgroups are given above.

Solution: Hint: This is not true. Hint: For a simple example, choose K and H
from the subgroups of D4 given above. The edge between each arrow (the index
of H in K) is 2, so each subgroup K is normal in subgroup H whenever there is an
edge between them. However, the subgroup generated by just one reflection is not
normal in D4.

7. Let H be a subgroup of G. Given two fixed elements a, b ∈ G, define the sets

aHbH = {ah1bh2 | h1, h2 ∈ H} and abH = {abh | h ∈ H} .

Prove that if H ⊴G, then aHbH = abH.

8. Prove that A× {eB} is a normal subgroup of A×B, where eB is the identity element of B.
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9. All of the following statements are false. For each one, exhibit an explicit counterexample,
and justify your reasoning. Assume that each H1 ⊴G1 and H2 ⊴G2.

(a) If H and G/H is abelian, then G is abelian.

Hint: A smallest counterexample would be to let G be a non-abelian group of order 6.

(b) If every proper subgroup H of a group G is cyclic, then G is cyclic.

Solution: Hint: Let G be a non-cyclic group of order 4 or 6.

(c) If G1
∼= G2 and H1

∼= H2, then G1/H1
∼= G2/H2.

Solution: A counterexample (where G1 and G2 are finite groups) is given earlier
in this PDF file

Solution: Another counterexample is to consider G1 = G2 = Z and its subgroups
H1 = 4Z and H2 = 5Z. Then H1 and H2 are isomorphic because they are both
cyclic groups of infinite order. But G1/H1 = Z/4Z has order 4 while G2/H2 = Z/5Z
has order 5.

(d) If H1
∼= H2 and G1/H1

∼= G2/H2, then G1
∼= G2.

Hint: A smallest counterexample is to take non-isomorphic groups G1 and G2 which are both of

order 4.


