1. Prove or disprove: The groups $4\mathbb{Z}$ and $5\mathbb{Z}$ are isomorphic.

Solution: True. Proof: The group

$$4\mathbb{Z} = \{4k : k \in \mathbb{Z}\} = \langle 4 \rangle$$

is a cyclic group of infinite order, and

$$5\mathbb{Z} = \{5k : k \in \mathbb{Z}\} = \langle 5 \rangle$$

is also a cyclic group of infinite order.

Every infinite cyclic group is isomorphic to \mathbb{Z} , so $4\mathbb{Z}$ and $5\mathbb{Z}$ are isomorphic.

An explicit isomorphism $f: 4\mathbb{Z} \to 5\mathbb{Z}$ can be given as follows: For each $4k \in 4\mathbb{Z}$, let

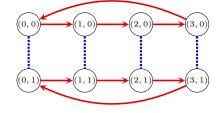
$$f(4k) = 5k.$$

2. Question:

If H and K are subgroups and $H \cong K$, then are G/H and G/K isomorphic?

To answer this question, consider the group $G := \mathbb{Z}_4 \times \mathbb{Z}_2$. Below is the Cayley diagram for G with two generators,

(1,0) (of order 4, solid arrow) and (0,1) (of order 2, dotted edge):



We can visually demonstrate (using the above Cayley diagram) that the quotient of $\mathbb{Z}_4 \times \mathbb{Z}_2$ by the subgroup $H = \langle (0,1) \rangle$ is the cyclic group \mathbb{Z}_4 . To do this, collapse all the dotted edges representing H.

(a) List all elements (cosets) in the quotient group $G/H = (\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (0,1) \rangle$ (or circle them).

Solution: The quotient group $\mathbb{Z}_4 \times \mathbb{Z}_2/\langle (0,1) \rangle$ consists of the cosets $\langle (0,1) \rangle$, $(1,0) + \langle (0,1) \rangle$, $(2,0) + \langle (0,1) \rangle$, $(3,0) + \langle (0,1) \rangle$ (b) The quotient of $G = \mathbb{Z}_4 \times \mathbb{Z}_2$ by the subgroup $K = \langle (2,0) \rangle$ is a harder to see. List all elements in the quotient group G/K.

Solution: The quotient group $G/K = \mathbb{Z}_4 \times \mathbb{Z}_2/\langle (2,0) \rangle$ consists of the cosets $\langle (2,0) \rangle$, $(1,0) + \langle (2,0) \rangle$, $(0,1) + \langle (2,0) \rangle$, $(1,1) + \langle (2,0) \rangle$.

(c) What familiar group is $G/K = (\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,0) \rangle$ isomorphic to?

Solution: This group is of order 4, so it's either isomorphic to \mathbb{Z}_4 or V_4 . We can compute the order of all the non-identity elements:

 $((1,0) + \langle (2,0) \rangle) + ((1,0) + \langle (2,0) \rangle) = (2,0) + \langle (2,0) \rangle = \langle (2,0) \rangle,$

so $(1,0) + \langle (2,0) \rangle$ has order 2. Similarly, both

> $(0,1) + \langle (2,0) \rangle$, $(1,1) + \langle (2,0) \rangle$.

have order 2.

So no element generates the entire group, so it's not a cyclic group. Therefore, this group is isomorphic to V_4 .

3. The *center* of a group G is the set

 $Z(G) = \{ z \in G \mid gz = zg, \text{ for all } g \in G \} = \{ z \in G \mid gzg^{-1} = z, \text{ for all } g \in G \}.$

We proved in an earlier homework that Z(G) is a subgroup of G. Now, prove that Z(G) is normal in G.

4. Let $f: G \to H$ be a group homomorphism. Prove that the subgroup ker f is normal in G.

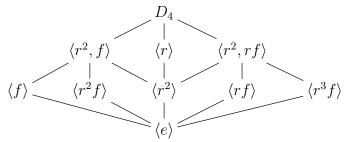
Solution: Let K denote ker f. (We will show that $gkg^{-1} \in K$ for all $k \in K$ and $g \in G$.) Let $k \in K$ and $q \in G$. We have

$$f(gkg^{-1}) = f(g) f(k) f(g^{-1}) = f(g) e f(g)^{-1} = e,$$

where the second equality is due to the fact that $k \in \ker f$ and the fact that the inverse of f(g) is $f(g^{-1})$. Therefore, $gkg^{-1} \in K$.

- 5. Consider the alternating group $A_4 = \langle (123), (12)(34) \rangle$.
 - (a) Find all conjugates of the cyclic subgroup $H = \langle (1\,2\,3) \rangle$, and state whether it is normal in A_4 .
 - (b) Find all conjugates of the cyclic subgroup $K = \langle (12)(34) \rangle$, and state whether it is normal in A_4 .

6. The subgroup lattice of D_4 is shown here:



For each of the 10 subgroups of D_4 , find all of its conjugates, and determine whether it is normal in D_4 . Fully justify your answers. [*Hint*: do this without computing xHx^{-1} for any subgroup H.]

Solution: Hint: The trivial group, the entire group, $\langle r^2 \rangle$, and the three subgroups of order 4 are all normal, so the only conjugate of H from this list is H itself.

We only need to figure out the conjugate subgroups of the group of order 2 generated a reflection. The reflections f and $r^2 f$ are the same type, so they are in the same conjugacy class. Hence the two conjugates of $\langle f \rangle$ are itself and $\langle r^2 f \rangle$. Similarly, the two conjugates of $\langle r^2 f \rangle$ are itself and $\langle f \rangle$.

The two conjugates of $\langle rf \rangle$ are itself and $\langle r^3 f \rangle$. Similarly, the two conjugates of $\langle r^3 f \rangle$ are itself and $\langle rf \rangle$.

- II: Consider a chain of subgroups $K \leq H \leq G$.
 - (a) Prove or disprove (with a counterexample): If $K \leq G$, then $K \leq H$.

Solution: Hint: This is true. Why?

(b) Prove or disprove (with a counterexample): If $K \leq H \leq G$, then $K \leq G$. Hint: Check whether this is true for D_4 whose subgroups are given above.

Solution: Hint: This is not true. Hint: For a simple example, choose K and H from the subgroups of D_4 given above. The edge between each arrow (the index of H in K) is 2, so each subgroup K is normal in subgroup H whenever there is an edge between them. However, the subgroup generated by just one reflection is not normal in D_4 .

7. Let H be a subgroup of G. Given two fixed elements $a, b \in G$, define the sets

 $aHbH = \{ah_1bh_2 \mid h_1, h_2 \in H\}$ and $abH = \{abh \mid h \in H\}.$

Prove that if $H \trianglelefteq G$, then aHbH = abH.

8. Prove that $A \times \{e_B\}$ is a normal subgroup of $A \times B$, where e_B is the identity element of B.

- 9. All of the following statements are *false*. For each one, exhibit an explicit counterexample, and justify your reasoning. Assume that each $H_1 \leq G_1$ and $H_2 \leq G_2$.
 - (a) If H and G/H is abelian, then G is abelian.

Hint: A smallest counterexample would be to let G be a non-abelian group of order 6.

(b) If every proper subgroup H of a group G is cyclic, then G is cyclic.

Solution: Hint: Let G be a non-cyclic group of order 4 or 6.

(c) If $G_1 \cong G_2$ and $H_1 \cong H_2$, then $G_1/H_1 \cong G_2/H_2$.

Solution: A counterexample (where G_1 and G_2 are finite groups) is given earlier in this PDF file

Solution: Another counterexample is to consider $G_1 = G_2 = \mathbb{Z}$ and its subgroups $H_1 = 4\mathbb{Z}$ and $H_2 = 5\mathbb{Z}$. Then H_1 and H_2 are isomorphic because they are both cyclic groups of infinite order. But $G_1/H_1 = \mathbb{Z}/4\mathbb{Z}$ has order 4 while $G_2/H_2 = \mathbb{Z}/5\mathbb{Z}$ has order 5.

(d) If $H_1 \cong H_2$ and $G_1/H_1 \cong G_2/H_2$, then $G_1 \cong G_2$.

Hint: A smallest counterexample is to take non-isomorphic groups G_1 and G_2 which are both of order 4.