1. Prove or disprove: The groups $4\mathbb{Z}$ and $5\mathbb{Z}$ are isomorphic.

2. Question:

If H and K are subgroups and $H \cong K$, then are G/H and G/K isomorphic?

To answer this question, consider the group $G := \mathbb{Z}_4 \times \mathbb{Z}_2$. Below is the Cayley diagram for G with two generators,

(1,0) (of order 4, solid arrow) and (0,1) (of order 2, dotted edge):

We can visually demonstrate (using the above Cayley diagram) that the quotient of $\mathbb{Z}_4 \times \mathbb{Z}_2$ by the subgroup $H = \langle (0,1) \rangle$ is the cyclic group \mathbb{Z}_4 . To do this, collapse all the dotted edges representing H.

- (a) List all elements (cosets) in the quotient group $G/H = (\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (0,1) \rangle$ (or circle them).
- (b) The quotient of $G = \mathbb{Z}_4 \times \mathbb{Z}_2$ by the subgroup $K = \langle (2,0) \rangle$ is a harder to see. List all elements in the quotient group G/K.
- (c) What familiar group is $G/K = (\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,0) \rangle$ isomorphic to?
- 3. The *center* of a group G is the set

 $Z(G) = \{ z \in G \mid gz = zg, \text{ for all } g \in G \} = \{ z \in G \mid gzg^{-1} = z, \text{ for all } g \in G \}.$

We proved in an earlier homework that Z(G) is a subgroup of G. Now, prove that Z(G) is normal in G.

- 4. Suppose $f: G \to H$ is a group homomorphism. Prove that the subgroup ker f is normal in G.
- 5. Consider the alternating group $A_4 = \langle (123), (12)(34) \rangle$.
 - (a) Find all conjugates of the subgroup $H = \langle (123) \rangle$, and state whether it is normal in A_4 .
 - (b) Find all conjugates of the subgroup $K = \langle (12)(34) \rangle$, and state whether it is normal in A_4 .

6. The subgroup lattice of D_4 is shown here:

For each of the 10 subgroups of D_4 , find all of its conjugates, and determine whether it is normal in D_4 . Fully justify your answers. [*Hint*: do this without computing xHx^{-1} for any subgroup H.]

- II: Consider a chain of subgroups $K \leq H \leq G$.
 - (a) Prove or disprove (with a counterexample): If $K \leq G$, then $K \leq H$.
 - (b) Prove or disprove (with a counterexample): If $K \leq H \leq G$, then $K \leq G$. Hint: Check whether this is true for D_4 whose subgroups are given above.
- 7. Let H be a subgroup of G. Given two fixed elements $a, b \in G$, define the sets

$$aHbH = \{ah_1bh_2 \mid h_1, h_2 \in H\}$$
 and $abH = \{abh \mid h \in H\}.$

Prove that if $H \trianglelefteq G$, then aHbH = abH.

- 8. Prove that $A \times \{e_B\}$ is a normal subgroup of $A \times B$, where e_B is the identity element of B.
- 9. All of the following statements are *false*. For each one, exhibit an explicit counterexample, and justify your reasoning. Assume that each $H_1 \leq G_1$ and $H_2 \leq G_2$.
 - (a) If H and G/H is abelian, then G is abelian. Hint: A smallest counterexample would be to let G be a non-abelian group of order 6.
 - (b) If every proper subgroup H of a group G is cyclic, then G is cyclic.
 - (c) If $G_1 \cong G_2$ and $H_1 \cong H_2$, then $G_1/H_1 \cong G_2/H_2$.
 - (d) If $H_1 \cong H_2$ and $G_1/H_1 \cong G_2/H_2$, then $G_1 \cong G_2$.

Hint: A smallest counterexample is to take non-isomorphic groups G_1 and G_2 which are both of order 4.