1. Let H denote the subgroup $\{1, -1\}$ of the multiplicative group \mathbb{R}^* . Let G be a subgroup of S_n , and define a function $f: G \to H$ by

$$f(w) = \begin{cases} 1 & \text{if } w \text{ is an even permutation} \\ -1 & \text{if } w \text{ is an odd permutation} \end{cases}$$

(a) Prove that f is a homomorphism from G to H.

$$f(vw) = \begin{cases} 1 & \text{if } w \text{ and } v \text{ have the same parity} \\ -1 & \text{if } w \text{ and } v \text{ have opposite parity} \end{cases},$$

and

Solution:

$$f(v)f(w) = \begin{cases} 1 & \text{if } w \text{ and } v \text{ have the same parity} \\ -1 & \text{if } w \text{ and } v \text{ have opposite parity.} \end{cases}$$

(b) What is the kernel of f?

Solution: ker f is the set of even permutations in G

- (c) If we let $G = \langle (13), (24) \rangle$ be the subgroup of S_5 generated by (13) and (24), what is ker f and Im f?
- (d) If $G = \langle (13)(24), (12)(34) \rangle$ is the subgroup of S_5 generated by (13)(24) and (12)(34), what is ker f and Im f?

Solution: Since the group G is $\{Id, (13)(24), (12)(34), (14)(23)\}$, all permutations in G are even.

The kernel of f is the entire group G, and the image of f is the trivial subgroup $\{1\}$.

- (e) What is the kernel of f and the image of f if we let $G = \langle (12)(345) \rangle$ be the subgroup of S_5 generated by (12)(345)?
- 2. Consider the map $\phi : \mathbb{C}^* \to \mathbb{C}^*$ defined by

$$\phi(z) = z^4$$

a.) Prove that ϕ is a homomorphism.

Solution: HW06

b.) List the elements in the kernel of ϕ .

Note: Since 1 is the identity element in \mathbb{C}^* , the kernel of ϕ is ker $\phi = \{z \in \mathbb{C}^* : \phi(z) = 1\}$.

Solution: HW06

c.) Is ϕ an isomorphism? (If yes, prove that it is both surjective *and* injective; if no, prove that it's not injective *or* not surjective.)

Solution: HW06

3. Consider the map $\psi : \mathbb{Z}_{12} \to \mathbb{Z}_{10}$ defined by

$$\psi(m) = 3m$$

a.) Prove that ψ is *not* a homomorphism.

Solution: We have $\psi(6+6) = 3(0) = 0$, but $\psi(6) + \psi(6) = 8 + 8 = 6$. So $\psi(6+6) \neq \psi(6) + \psi(6)$.

4. Consider the map $\psi : \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ defined by

$$\psi(m) = 3m$$

a.) Prove that ψ is a homomorphism.

Solution: Suppose $a, b \in \mathbb{Z}_{12}$. Then $\psi(a+b) = 3(a+b) = 3a+3b = \psi(a) + \psi(b)$.

b.) List the elements in the kernel of ψ .

Note: Since 0 is the identity element in \mathbb{Z}_{12} , the kernel of ψ is ker $\psi = \{m \in \mathbb{Z}_{12} : \psi(m) = 0\}$.

Solution: The elements in ker ψ are the elements $a \in \mathbb{Z}_{12}$ such that 3a is congruent to 0 modulo 12, that is, 3a - 0 is divisible by 12. So

$$\ker \psi = \{0, 4, 8\}$$

c.) Is ψ an isomorphism? (If yes, prove that it is both surjective *and* injective; if no, prove that it's not injective *or* prove that it is not surjective.)

Solution: No, the function ψ is not an isomorphism. For example, we know ψ is not injective since $\psi(0) = 0 = \psi(4)$ although $0 \neq 4$ in \mathbb{Z}_{12} .

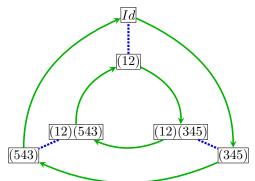
5. Let $H = \langle (12), (345) \rangle$ denote the subgroup of S_5 generated by (12) and (345).

Prove or disprove: There is an isomorphism from $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ to H.

Solution: True.

First, let's find all elements of $H = \langle (12), (345) \rangle$ by drawing its Cayley diagram using the generating set $\{(12), (345)\}$. By definition, H is the set of all products of (12), (345), and their inverses.

Below is the Cayley graph for H with $S = \{(12), (345)\}$ as the generating set. Each solid (green) arrow has label (345). Each dotted (blue) edge has label (12).



We found that $H = \{Id, (12)(345), (543), (12), (345), (12)(543)\}$, which is equal to

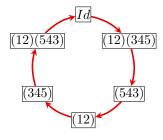
 $\{Id, c, c, c^2, c^3, c^4, c^5\}$, where c = (12)(345).

So *H* is a cyclic group of order 6. Every cyclic group of order 6 is isomorphic to \mathbb{Z}_6 , so *H* is isomorphic to \mathbb{Z}_6 (meaning there exists an isomorphism between *H* and \mathbb{Z}_6).

We will now explicitly define an isomorphism from \mathbb{Z}_6 to H. Let $f : \mathbb{Z}_6 \to H$ be defined by

$$f(x) = c^x$$

Below is the Cayley graph for H with c = (12)(345) as the generator (so here the generating set S is the singleton set $\{c\}$). Each solid (red) arrow is labeled by c = (12)(345).



6. Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to $U(10) = \{1, 3, 7, 9\}$.

Solution: True.

Note that $\langle 3 \rangle = \{3^0, 3^1, 3^3, 3^2\} = \{1, 3, 7, 9\} = U(10)$, so U(10) is a cyclic group which can be generated by 3. (Another possible generator is 7.) Every cyclic group of order 4 is isomorphic to \mathbb{Z}_4 , so U(10) is isomorphic to \mathbb{Z}_4 (meaning there exists an isomorphism between U(10) and \mathbb{Z}_4). We can explicitly define an isomorphism. Let $f : \mathbb{Z}_4 \to U(10)$ be defined by

 $f(x) = 3^x$

7. Let *J* denote the subgroup of S_5 generated by (13) and (24). Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to $J = \langle (13), (24) \rangle$.

Solution: False.

First, let's find all elements of J. By definition, J is the set of all products of (13), (24), and their inverses. We find that $J = \{Id, (13), (24), (13)(24)\}$. Observe that $\langle (13) \rangle = \{Id, (13)\}, \langle (24) \rangle = \{Id, (24)\}, \text{ and } \langle (13)(24) \rangle = \{Id, (13)(24)\}, \text{ so no one element of } J \text{ can generate the entire group. Therefore, } J \text{ is not a cyclic group.}$

Proof that there is no isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to J: Suppose there is an isomorphism $f : \mathbb{Z}_4 \to J$.

- Case f(1) = Id: Then $f(2) = f(1+1) = f(1)f(1) = Id \cdot Id = Id = f(1)$. Having f(2) = f(1) means f is not injective.
- Case $f(1) \neq Id$: Then f(1) = x where x = (13), (24), or (13)(24). Then

$$f(3) = f(1 + 1 + 1)$$

= $f(1)f(1)f(1)$
= x^3
= x^2x
= x since we checked above that $x^2 = Id$
= $f(1)$

Having f(3) = f(1) means f is not injective.

In both cases, f is not a bijection. So there is no isomorphism from \mathbb{Z}_4 to J.

8. Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to $U(8) = \{1, 3, 5, 7\}$.

Solution: HW06

- 9. Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to \mathbb{T}_4 , where
 - \mathbb{T}_4 is the 4-th roots of unity $\{1, i, -1, -i\} = \{1, e^{i(\pi/2)}, e^{i(\pi/2)2}, e^{i(\pi/2)3}\}.$

Solution: HW06

10. (a) Complete the table so that it depicts the Cayley table ("multiplication" table) of a group $G = \{e, x, y, z\}$, with e as the identity element.

There may be more than one way to complete a table, and if so you need to give all possibilities. (Note: Many copies of this table are printed below so that you can use them for your scratch work.)

	e	x	y	z
e				
x				
y			e	
z				

ic are printed below s				
	e	x	y	z
e				
x				
y			e	
z				

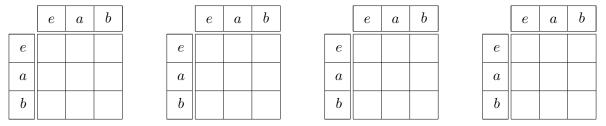
	e	x	y	z
e				
x				
y			e	
z				

worm)				
	e	x	y	z
e				
x				
y			e	
z				

Solution: One is the Klein 4 group and the other is the cyclic group of order 4.

- (b) Circle one of the tables you have completed. Write down a minimal generating set.
- (c) Draw the Cayley diagram for the minimal generating set that you wrote above.
- (d) What is the order of the element y in the group whose Cayley table you circled above?
- 11. Fill in the table so that it depicts the Cayley table of a group $G = \{e, a, b\}$, with e as the identity element. There may be more than one way to complete a table, and if so you need to give all possibilities.

(Note: Many copies of this table are printed below so that you can use them for your scratch work.)



- (a) Circle one of the tables you have completed. Write down a minimal generating set.
- (b) Draw the Cayley diagram for the minimal generating set that you wrote above.
- (c) What is the order of the element b in the group whose Cayley table you circled above?
- 12. Let G and H be groups, and let e_G and e_H denote their identity elements. Let $f : G \to H$ be a homomorphism of groups.
 - (a) Prove that f sends e_G to e_H .

Solution: We have

 $e_H f(e_G) = f(e_G)$ since e_H is the identity element in H= $f(e_G \ e_G)$ since e_G is the identity element in G= $f(e_G)f(e_G)$ since f is a homomorphism

Multiplying on the left by $f(e_G)^{-1}$ of $e_H f(e_G) = f(e_G) f(e_G)$, we get $e_H = f(e_G)$.

(b) For each $x \in G$, prove that the inverse of f(x) in H is $f(x^{-1})$.

Solution: See Judson textbook Proposition 11.4 for parts (a), (b), (c), (d)

- (c) Let K be a subgroup of G. Prove that the image f(K) is a subgroup of H.
- (d) Let J be a subgroup of H. Prove that the preimage $f^{-1}(J)$ is a subgroup of G.
- (e) Prove that ker f is a subgroup of G.

Solution: (See week 6 class notes and Judson textbook Theorem 11.5)