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1. Let H denote the subgroup {1,−1} of the multiplicative group R∗. Let G be a subgroup of Sn, and
define a function f : G→ H by

f(w) =

{
1 if w is an even permutation

−1 if w is an odd permutation

(a) Prove that f is a homomorphism from G to H.

Solution:

f(vw) =

{
1 if w and v have the same parity

−1 if w and v have opposite parity
,

and

f(v)f(w) =

{
1 if w and v have the same parity

−1 if w and v have opposite parity.

(b) What is the kernel of f?

Solution: ker f is the set of even permutations in G

(c) If we let G = ⟨(13), (24)⟩ be the subgroup of S5 generated by (13) and (24), what is ker f and
Imf?

(d) If G = ⟨(13)(24), (12)(34)⟩ is the subgroup of S5 generated by (13)(24) and (12)(34), what is ker f
and Imf?

Solution: Since the group G is {Id, (13)(24), (12)(34), (14)(23)}, all permutations in G are
even.

The kernel of f is the entire group G, and the image of f is the trivial subgroup {1}.

(e) What is the kernel of f and the image of f if we let G = ⟨(12)(345)⟩ be the subgroup of S5
generated by (12)(345)?

2. Consider the map ϕ : C∗ → C∗ defined by

ϕ(z) = z4

a.) Prove that ϕ is a homomorphism.

Solution: HW06

b.) List the elements in the kernel of ϕ.

Note: Since 1 is the identity element in C∗, the kernel of ϕ is kerϕ = {z ∈ C∗ : ϕ(z) = 1}.

Solution: HW06
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c.) Is ϕ an isomorphism? (If yes, prove that it is both surjective and injective; if no, prove that it’s not injective or

not surjective.)

Solution: HW06

3. Consider the map ψ : Z12 → Z10 defined by

ψ(m) = 3m

a.) Prove that ψ is not a homomorphism.

Solution: We have ψ(6+ 6) = 3(0) = 0, but ψ(6)+ψ(6) = 8+8 = 6. So ψ(6+ 6) ̸= ψ(6)+ψ(6).

4. Consider the map ψ : Z12 → Z12 defined by

ψ(m) = 3m

a.) Prove that ψ is a homomorphism.

Solution: Suppose a, b ∈ Z12. Then ψ(a+ b) = 3(a+ b) = 3a+ 3b = ψ(a) + ψ(b).

b.) List the elements in the kernel of ψ.

Note: Since 0 is the identity element in Z12, the kernel of ψ is kerψ = {m ∈ Z12 : ψ(m) = 0}.

Solution: The elements in kerψ are the elements a ∈ Z12 such that 3a is congruent to 0 modulo
12, that is, 3a− 0 is divisible by 12. So

kerψ = {0, 4, 8}

c.) Is ψ an isomorphism? (If yes, prove that it is both surjective and injective; if no, prove that it’s not injective or

prove that it is not surjective.)

Solution: No, the function ψ is not an isomorphism. For example, we know ψ is not injective
since ψ(0) = 0 = ψ(4) although 0 ̸= 4 in Z12.

5. Let H = ⟨(12), (345)⟩ denote the subgroup of S5 generated by (12) and (345).

Prove or disprove: There is an isomorphism from Z6 = {0, 1, 2, 3, 4, 5} to H.
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Solution: True.
First, let’s find all elements ofH = ⟨(12), (345)⟩ by drawing its Cayley diagram using the generating
set {(12), (345)}. By definition, H is the set of all products of (12), (345), and their inverses.

Below is the Cayley graph for H with S = {(12), (345)} as the generating set. Each solid (green)
arrow has label (345). Each dotted (blue) edge has label (12).

(12)

(12)(345)(12)(543)

Id

(543) (345)

We found that H = {Id, (12)(345), (543), (12), (345), (12)(543)}, which is equal to

{Id, c, c, c2, c3, c4, c5}, where c = (12)(345).

So H is a cyclic group of order 6. Every cyclic group of order 6 is isomorphic to Z6, so H is
isomorphic to Z6 (meaning there exists an isomorphism between H and Z6).

We will now explicitly define an isomorphism from Z6 to H. Let f : Z6 → H be defined by

f(x) = cx

Below is the Cayley graph for H with c = (12)(345) as the generator (so here the generating set
S is the singleton set {c}). Each solid (red) arrow is labeled by c = (12)(345).

Id

(12)(345)

(543)

(12)

(345)

(12)(543)

6. Prove or disprove: there is an isomorphism from Z4 = {0, 1, 2, 3} to U(10) = {1, 3, 7, 9}.

Solution: True.
Note that ⟨3⟩ = {30, 31, 33, 32} = {1, 3, 7, 9} = U(10), so U(10) is a cyclic group which can be
generated by 3. (Another possible generator is 7.) Every cyclic group of order 4 is isomorphic to
Z4, so U(10) is isomorphic to Z4 (meaning there exists an isomorphism between U(10) and Z4).

We can explicitly define an isomorphism. Let f : Z4 → U(10) be defined by

f(x) = 3x

7. Let J denote the subgroup of S5 generated by (13) and (24). Prove or disprove: there is an isomorphism
from Z4 = {0, 1, 2, 3} to J = ⟨(13), (24)⟩.
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Solution: False.
First, let’s find all elements of J . By definition, J is the set of all products of (13), (24), and
their inverses. We find that J = {Id, (13), (24), (13)(24)}. Observe that ⟨(13)⟩ = {Id, (13)},
⟨(24)⟩ = {Id, (24)}, and ⟨(13)(24)⟩ = {Id, (13)(24)}, so no one element of J can generate the
entire group. Therefore, J is not a cyclic group.

Proof that there is no isomorphism from Z4 = {0, 1, 2, 3} to J :

Suppose there is an isomorphism f : Z4 → J .

• Case f(1) = Id: Then f(2) = f(1+1) = f(1)f(1) = Id ·Id = Id = f(1). Having f(2) = f(1)
means f is not injective.

• Case f(1) ̸= Id: Then f(1) = x where x = (13), (24), or (13)(24). Then

f(3) = f(1 + 1 + 1)

= f(1)f(1)f(1)

= x3

= x2x

= x since we checked above that x2 = Id

= f(1)

Having f(3) = f(1) means f is not injective.

In both cases, f is not a bijection. So there is no isomorphism from Z4 to J .

8. Prove or disprove: there is an isomorphism from Z4 = {0, 1, 2, 3} to U(8) = {1, 3, 5, 7}.

Solution: HW06

9. Prove or disprove: there is an isomorphism from Z4 = {0, 1, 2, 3} to T4, where

T4 is the 4-th roots of unity {1, i,−1,−i} = {1, ei(π/2), ei(π/2)2, ei(π/2)3}.

Solution: HW06

10. (a) Complete the table so that it depicts the Cayley table (“multiplication” table) of a group G =
{e, x, y, z}, with e as the identity element.

There may be more than one way to complete a table, and if so you need to give all possibilities.

(Note: Many copies of this table are printed below so that you can use them for your scratch work.)

e

x

y

z

e x y z

e

e

x

y

z

e x y z

e

e

x

y

z

e x y z

e

e

x

y

z

e x y z

e
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Solution: One is the Klein 4 group and the other is the cyclic group of order 4.

(b) Circle one of the tables you have completed. Write down a minimal generating set.

(c) Draw the Cayley diagram for the minimal generating set that you wrote above.

(d) What is the order of the element y in the group whose Cayley table you circled above?

11. Fill in the table so that it depicts the Cayley table of a group G = {e, a, b}, with e as the identity
element. There may be more than one way to complete a table, and if so you need to give all
possibilities.

(Note: Many copies of this table are printed below so that you can use them for your scratch work.)

e

a

b

e a b

e

a

b

e a b

e

a

b

e a b

e

a

b

e a b

(a) Circle one of the tables you have completed. Write down a minimal generating set.

(b) Draw the Cayley diagram for the minimal generating set that you wrote above.

(c) What is the order of the element b in the group whose Cayley table you circled above?

12. Let G and H be groups, and let eG and eH denote their identity elements. Let f : G → H be a
homomorphism of groups.

(a) Prove that f sends eG to eH .

Solution: We have

eHf(eG) = f(eG) since eH is the identity element in H

= f(eG eG) since eG is the identity element in G

= f(eG)f(eG) since f is a homomorphism

Multiplying on the left by f(eG)
−1 of eHf(eG) = f(eG)f(eG), we get eH = f(eG).

(b) For each x ∈ G, prove that the inverse of f(x) in H is f(x−1).

Solution: See Judson textbook Proposition 11.4 for parts (a), (b), (c), (d)

(c) Let K be a subgroup of G. Prove that the image f(K) is a subgroup of H.

(d) Let J be a subgroup of H. Prove that the preimage f−1(J) is a subgroup of G.

(e) Prove that ker f is a subgroup of G.

Solution: (See week 6 class notes and Judson textbook Theorem 11.5)


