1. Let H denote the subgroup $\{1, -1\}$ of the multiplicative group \mathbb{R}^* . Let G be a subgroup of S_n , and define a function $f: G \to H$ by

$$f(w) = \begin{cases} 1 & \text{if } w \text{ is an even permutation} \\ -1 & \text{if } w \text{ is an odd permutation} \end{cases}$$

- (a) Prove that f is a homomorphism from G to H.
- (b) What is the kernel of f?
- (c) If we let $G = \langle (13), (24) \rangle$ be the subgroup of S_5 generated by (13) and (24), what is ker f and Im f?
- (d) If $G = \langle (13)(24), (12)(34) \rangle$ is the subgroup of S_5 generated by (13)(24) and (12)(34), what is ker f and Im f?
- (e) What is the kernel of f and the image of f if we let $G = \langle (12)(345) \rangle$ be the subgroup of S_5 generated by (12)(345)?
- 2. Consider the map $\phi : \mathbb{C}^* \to \mathbb{C}^*$ defined by

$$\phi(z) = z^4$$

- a.) Prove that ϕ is a homomorphism.
- b.) List the elements in the kernel of ϕ .

Note: Since 1 is the identity element in \mathbb{C}^* , the kernel of ϕ is ker $\phi = \{z \in \mathbb{C}^* : \phi(z) = 1\}$.

c.) Is ϕ an isomorphism? (If yes, prove that it is both surjective *and* injective; if no, prove that it's not injective *or* not surjective.)

3. Consider the map $\psi : \mathbb{Z}_{12} \to \mathbb{Z}_{10}$ defined by

$$\psi(m) = 3m$$

- a.) Prove that ψ is *not* a homomorphism.
- 4. Consider the map $\psi : \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ defined by

$$\psi(m) = 3m$$

- a.) Prove that ψ is a homomorphism.
- b.) List the elements in the kernel of ψ .

Note: Since 0 is the identity element in \mathbb{Z}_{12} , the kernel of ψ is ker $\psi = \{m \in \mathbb{Z}_{12} : \psi(m) = 0\}$.

c.) Is ψ an isomorphism? (If yes, prove that it is both surjective *and* injective; if no, prove that it's not injective *or* prove that it is not surjective.)

5. Let $H = \langle (12), (345) \rangle$ denote the subgroup of S_5 generated by (12) and (345).

Prove or disprove: There is an isomorphism from $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ to H.

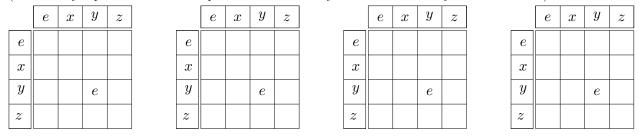
- 6. Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to $U(10) = \{1, 3, 7, 9\}$.
- 7. Let J denote the subgroup of S_5 generated by (13) and (24). Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to $J = \langle (13), (24) \rangle$.

- 8. Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to $U(8) = \{1, 3, 5, 7\}$.
- 9. Prove or disprove: there is an isomorphism from $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ to \mathbb{T}_4 , where

 \mathbb{T}_4 is the 4-th roots of unity $\{1, i, -1, -i\} = \{1, e^{i(\pi/2)}, e^{i(\pi/2)2}, e^{i(\pi/2)3}\}.$

10. (a) Complete the table so that it depicts the Cayley table ("multiplication" table) of a group $G = \{e, x, y, z\}$, with e as the identity element.

There may be more than one way to complete a table, and if so you need to give all possibilities. (Note: Many copies of this table are printed below so that you can use them for your scratch work.)



- (b) Circle one of the tables you have completed. Write down a minimal generating set.
- (c) Draw the Cayley diagram for the minimal generating set that you wrote above.
- (d) What is the order of the element y in the group whose Cayley table you circled above?
- 11. Fill in the table so that it depicts the Cayley table of a group $G = \{e, a, b\}$, with e as the identity element. There may be more than one way to complete a table, and if so you need to give all possibilities.

	e	a	b		e	a	b		e	a	b		e	a	b
e				e				e				e			
a				a				a				a			
b				b				b				b			

(Note: Many copies of this table are printed below so that you can use them for your scratch work.)

- (a) Circle one of the tables you have completed. Write down a minimal generating set.
- (b) Draw the Cayley diagram for the minimal generating set that you wrote above.
- (c) What is the order of the element b in the group whose Cayley table you circled above?
- 12. Let G and H be groups, and let e_G and e_H denote their identity elements. Let $f : G \to H$ be a homomorphism of groups.
 - (a) Prove that f sends e_G to e_H .
 - (b) For each $x \in G$, prove that the inverse of f(x) in H is $f(x^{-1})$.
 - (c) Let K be a subgroup of G. Prove that the image f(K) is a subgroup of H.
 - (d) Let J be a subgroup of H. Prove that the preimage $f^{-1}(J)$ is a subgroup of G.
 - (e) Prove that ker f is a subgroup of G.