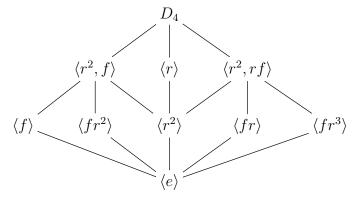
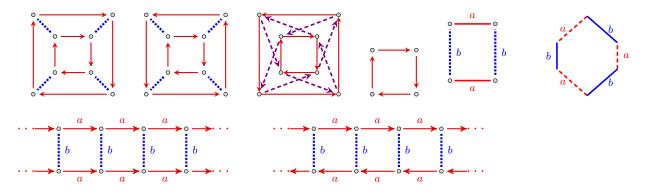
1. (a) The following is the "subgroup lattice" of D_4 Each edge between $K \leq H$ is labeled with the index, [H:K]. All labels are 2 (not drawn).



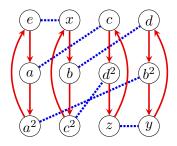
- (b) List all elements in the subgroup $\langle r^2, f \rangle$.
- (c) Is the left coset $r\langle r^2, f \rangle$ equal to the right coset $\langle r^2, f \rangle r$? Prove your answer.
- 2. (a) Consider the subgroup $H = \{(1), (1, 2)\}$ of S_3 . Are all left cosets of H the same as all right cosets of H?
 - (b) Consider the subgroup $J = \{(1), (123), (132)\}$ of S_3 . Are all left cosets of J the same as all right cosets of J?
 - (c) Let n > 2. Consider the subgroup A_n in S_n . Are all left cosets of A_n the same as the right cosets?
- 3. (a) What does it mean to say that a set S is a generating set of a group? What is a minimal generating set? Is it possible to have two different minimal generating sets for the same group? Give an example of a group with two different minimal generating sets.
 - (b) What do the vertices in a Cayley diagram represent?
 - (c) What do the arrows in a Cayley diagram represent?
- 4. What does it mean for a group to be abelian? What does it mean for a group to be non-abelian? How do you tell whether a group is abelian or non-abelian by looking at its Cayley graph?
- 5. Below are Cayley diagrams of eight different groups (all have different group structures).(a) For each Cayley diagram, determine whether the corresponding group is abelian or non-

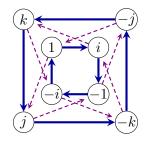
abelian.

(b) IF it is a Cayley diagram of a group shown in class, describe the group and the corresponding generators. (Six of the groups have been discussed during class so far.)



- 6. (a) Compute the orbit of the element r^2 in the group D_{10} , where r denotes the counterclockwise rotation by $\frac{2\pi}{10}$.
 - (b) Compute the orbit of the element 10 in the cyclic group \mathbb{Z}_{16}
- 7. Carry out the following steps for the groups whose Cayley graphs are shown below.



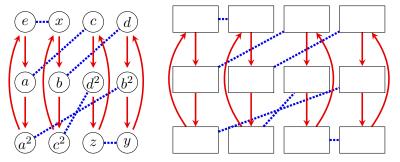


- (a) Find the orbit of each element.
- (b) Draw the orbit graph of the group.
- 8. (a) Draw the Cayley graph for \mathbb{Z}_6 with $\{2,3\}$ as a generating set.

(b) Compare this with the Cayley graph for $\mathbb{Z}_3 \times \mathbb{Z}_2$ with $\{(1,0), (0,1)\}$ as a generating set. What can you conclude about the group \mathbb{Z}_6 and the group $\mathbb{Z}_3 \times \mathbb{Z}_2$?

(c) Use the Cayley graph in class notes to help you find the subgroup of $\mathbb{Z}_3 \times \mathbb{Z}_2$ generated by the element (1,0). What is the subgroup generated by the element (0,1)? What is the subgroup generated by the element (2,1)?

- 9. The group S_3 can be generated by the transpositions (1 2) and (2 3). Make a Cayley diagram for S_3 using this generating set.
- 10. Make a Cayley diagram for the subgroup H of S_4 generated by the transpositions (1 2) and (3 4). What group is H the same as?
- 11. The following Cayley diagram for A_4 labels the elements with letters instead of permutations:



 $A_4 = \{e, a, a^2, b, b^2, c, c^2, d, d^2, x, y, z\}.$

Redraw this Cayley diagram but label the nodes with the 12 even permutations in S_4 . You need to determine which permutation corresponds to a, which to b, and so on.

Hint: There are many possible ways to do this. You should let a denote one of the permutations of order 3, and let x be an element of order 2 (for example, (12)(34)) that satisfies the pattern formed by the arrows, then determine the remaining elements.