PDF file created October 1, 2024

1 A cycle of odd length

• Warm-up: First compute $(15428)^2 = (15428)(15428)$.

Solution: Warm-up: $(15428)^2 = (15428)(15428) = | (14852)$

• Suppose σ is a cycle of odd length $(a_1 \ a_2 \dots \ a_{2k} \ a_{2k+1})$. Compute σ^2 .

Solution: We now compute σ^2 in general. For $i = 1, 2, ..., 2k - 1$, we see that σ sends a_i to a_{i+1} , and σ sends a_{i+1} to a_{i+2} , so

 $\sigma^2(a_i) = a_{i+2}$ for $i = 1, 2, ..., 2k - 1$.

We treat the other two indices $2k$ and $2k+1$ separately. We see that σ sends a_{2k} to a_{2k+1} , and σ sends a_{2k+1} to a_1 , so

$$
\sigma^2(a_{2k}) = a_1.
$$

Similarly, σ sends a_{2k+1} to a_1 , and σ sends a_1 to a_2 , so

 $\sigma^2(a_{2k+1}) = a_2.$

Therefore, $(a_1 \ a_2 \ldots \ a_{2k} \ a_{2k+1})^2 = |(a_1 \ a_3 \ a_5 \ \ldots \ a_{2k-1} \ a_{2k+1} \ a_2 \ a_4 \ a_6 \ \ldots \ a_{2k-2} \ a_{2k})|$.

• If σ is a cycle of odd length, prove that σ^2 is also a cycle.

Solution: This is proven above.

2 Product of transpositions (lemma)

a. Warm-up: First try writing (25) as a finite product of $(12),(13),(14),\ldots,(1n)$. Write the transposition (ab) as a finite product of $(12), (13), (14), \ldots, (1n)$.

Solution: Warm-up: $(25) = (12)(15)(12)$ General solution: If $a = 1$ or $b = 1$, then (ab) is already a product of $(12), (13), (14), \ldots, (1n)$. Otherwise, we can write $(a b) = (1 a)(1 b)(1 a)$

b. Warm-up: First try writing (25) as a finite product of $(12),(23),(34),\ldots,(n-1,n)$. Write the transposition (ab) as a finite product of $(12), (23), (34), \ldots, (n-1, n)$.

3 Exercise 26 of Judson Chapter 5

- a. Prove that any permutation in S_n can be written as a finite product of $(12),(13),(14),\ldots,(1n)$.
- b. Prove that any permutation in S_n is a finite product of $(12), (23), (34), \ldots, (n-1, n)$.

Solution: Every permutation in S_n can be written as the product of disjoint cycles (Textbook Theorem 5.9, stated in class but not proved). In class, we proved that every cycle is a product of transpositions: $(a_1 a_2 \ldots a_k) = (a_1 a_2)(a_2 a_3)(a_3 a_4) \ldots (a_{k-1} a_k)$. So every permutation can be written as a product of transpositions.

Since every transposition (ab) in S_n can be written as a product of $(12), (13), \ldots, (1n)$ by the previous exercise, every permutation in S_n can be written as a product of $(12), (13), \ldots, (1n)$. Similarly, the previous exercise tells us that every transposition $(a b)$ in S_n can be written as a product of $(12), (23), (34), \ldots, (n-1)$ 1, n), every permutation in S_n can be written as a product of $(12), (23), (34), \ldots, (n-1, n)$.

4 Conjugates

Let $\tau = (123 \dots k)$. a. Prove that if σ is any permutation, then $\sigma \tau \sigma^{-1} = (\sigma(1) \sigma(2) \sigma(3) \ldots \sigma(k)).$ Hint: Note that $\sigma^{-1}(\sigma(i)) = i$. Now compute $\sigma \tau \sigma^{-1}(\sigma(i))$.

Solution: Suppose σ is a permutation in S_n . (We need to show that, for all $i = 1, 2, ..., k-1$, the permutation $\sigma\tau\sigma^{-1}$ sends $\sigma(i)$ to $\sigma(i+1)$; we also need to show that $\sigma\tau\sigma^{-1}$ sends $\sigma(k)$ to $\sigma(1)$.)

If $i = 1, 2, \ldots, k - 1$, then we have

$$
\sigma \tau \sigma^{-1}(\sigma(i)) = \sigma \tau(i) \text{ since } \sigma^{-1} \sigma \text{ is the identity map}
$$

$$
= \sigma(i+1) \text{ since } \tau \text{ sends } i \text{ to } i+1
$$

We also have

$$
\sigma \tau \sigma^{-1}(\sigma(k)) = \sigma \tau(k) \text{ since } \sigma^{-1} \sigma \text{ is the identity map}
$$

$$
= \sigma(1) \text{ since } \tau \text{ sends } k \text{ to } 1
$$

This concludes the proof that $\sigma \tau \sigma^{-1} = (\sigma(1) \sigma(2) \sigma(3) \ldots \sigma(k)).$

b. Let $\mu = (b_1 b_2 \ldots b_k)$ be a cycle of length k. Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1} = \mu$.

Solution: Since the previous part tells us that $\sigma \tau \sigma^{-1} = (\sigma(1) \sigma(2) \sigma(3) \ldots \sigma(k))$, we can choose a permutation σ such that $\sigma(1) = b_1, \sigma(2) = b_2, \ldots, \sigma(k) = b_k$.

5 Conjugation computation

Let $\tau = (1234)$. (a) Let $\sigma = (135)(724)(89)$. Compute $\sigma \tau \sigma^{-1}$.

Solution: $\sigma \tau \sigma^{-1} = (135)(724)(89) (1234) (531)(427)(89) = (3457)$

(b) Let $\mu = (8275)$. Find a permutation σ such that $\sigma \tau \sigma^{-1} = \mu$.

Solution: We need to find a permutation such that

 $\sigma \tau \sigma^{-1} = \mu$: $\sigma(1234)\sigma^{-1} = (8275)$ We can use the result $\sigma\tau\sigma^{-1} = (\sigma(1) \sigma(2) \sigma(3) \ldots \sigma(k))$ from the next exercise. Let σ be a permutation which sends 1 to 8, 2 to 2, 3 to 7, 4 to 5. For example, we can choose $\sigma = (18)(37)(45)$.

Then $\sigma \tau \sigma^{-1} = (18)(37)(45)(1234)(18)(37)(45) = (8275) = \mu$

6 Computation of cosets

(a) List the left and right cosets of the subgroup $3\mathbb{Z}$ in \mathbb{Z} .

Solution: The left and right cosets are the same since \mathbb{Z} is abelian. They are $3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}$.

(b) List the elements in the alternating group A_4 .

Solution: The alternating group A_4 consists of the even permutations in S_4 .

There are twelve even permutations in S_4 . They are written down in the most recent class notes

(c) List the left and right cosets of the alternating subgroup A_4 in S_4 .

Solution: Since every permutation is either even or odd, the left cosets are $A_4 = \{$ the permutations from the previous exercise} and $(12)A_4 = \{odd \text{ permutations}\}\.$ The right cosets are the same two sets.

7 Lemma 6.3

Prove the following Lemma 6.3 in Judson Chapter 6: Let H be a subgroup of a group G and suppose that $a, b \in G$. The following conditions are equivalent.

- (1) $aH = bH$
- (2) $Ha^{-1} = Hb^{-1}$
- (3) $aH \subset bH$
- (4) $b \in aH$
- (5) $a^{-1}b \in H$

Solution: To prove that [\(3\)](#page-2-0) implies [\(1\),](#page-2-1) suppose $aH \subset bH$. So we have $a = ae = bh_1$ for some $h_1 \in H$, so

 $a h_1^{-1} = b.$ $\frac{1}{1} = b.$ (7.1)

Let $x \in bH$ (and we need to show that $x \in aH$). Then

$$
x = b h_2 \text{ for some } h_2 \in H
$$

= $(a h_1^{-1}) h_2$ by (7.1)
= $a(h_1^{-1} h_2) \in aH$ since $(h_1^{-1} h_2) \in aH$

Therefore $bH \subset aH$.

Solution: Proof for [\(1\)](#page-2-1) implies [\(2\)](#page-2-3) is in week 4 class notes. Proof for [\(4\)](#page-2-4) implies [\(3\)](#page-2-0) is in HW04.

Solution: To prove that [\(5\)](#page-2-5) implies [\(4\),](#page-2-4) suppose $a^{-1}b \in H$. Then $a^{-1}b = h$ for some $h \in H$. This means $b = ah \in aH$.

8 Conjugates and cosets

If $ghg^{-1} ∈ H$ for all $g ∈ G$ and $h ∈ H$, prove that $gH = Hg$ for all $g ∈ G$ (that is, prove that the left cosets are identical to the right cosets). (HW04)

9 Index

(a) Prove the set $H = \{Id, (12)(34), (13)(24), (14)(23)\}\$ is a subgroup of the symmetric group S_4 . (b) What is its index in S_4 ?

Solution: (a) Prove that the identity element is in H , that H is closed under the group operation, and H is closed under taking inverses. (b) By Lagrange's theorem, the index $[S_4: H]$ is $\frac{|S_4|}{|H|} = \frac{4!}{4!}$ $\frac{1}{4} = 3! = 6$.

10 Lagrange's Theorem

(a) Suppose G is a finite group with an element q of order 3 and an element h of order 5. Why must $|G| > 15$?

Solution: The order of g and the order of h must both divide the order of G .

(b) Suppose G is a group of order 23. Describe G. Explain your answer.

Solution: (See the proof of Judson's Corollary 6.12) Suppose $g \in G$ such that $g \neq e$. Since $\langle g \rangle$ is a subgroup of G, the number of elements in $\langle g \rangle$ must divide the number of elements in G (which is 23). Since $\langle g \rangle$ has more than one element (it contains at least g and e), we know that $\langle q \rangle$ is equal to 23. Therefore, $G = \langle g \rangle$. So G is a cyclic group of order 23 (the same as \mathbb{Z}_{23}).