PDF file created September 27, 2024

1 A cycle of odd length

- Warm-up: First compute $(15428)^2 = (15428)(15428)$.
- Suppose σ is a cycle of odd length $(a_1 \ a_2 \dots \ a_{2k} \ a_{2k+1})$. Compute σ^2 .
- If σ is a cycle of odd length, prove that σ^2 is also a cycle.

2 Product of transpositions (lemma)

- a. Warm-up: First try writing (25) as a finite product of $(12), (13), (14), \ldots, (1n)$. Write the transposition (ab) as a finite product of $(12), (13), (14), \ldots, (1n)$.
- b. Warm-up: First try writing (25) as a finite product of $(12), (23), (34), \ldots, (n-1, n)$. Write the transposition (a b) as a finite product of $(12), (23), (34), \ldots, (n-1, n)$.

3 Exercise 26 of Judson Chapter 5

- a. Prove that any permutation in S_n can be written as a finite product of $(12), (13), (14), \ldots, (1n)$.
- b. Prove that any permutation in S_n is a finite product of $(12), (23), (34), \ldots, (n-1, n)$.

4 Conjugates

Let $\tau = (123...k)$. a. Prove that if σ is any permutation, then $\sigma\tau\sigma^{-1} = (\sigma(1) \ \sigma(2) \ \sigma(3) \ ... \ \sigma(k))$. Hint: Note that $\sigma^{-1}(\sigma(i)) = i$. Now compute $\sigma\tau\sigma^{-1}(\sigma(i))$. b. Let $\mu = (b_1 \ b_2 \ ... \ b_k)$ be a cycle of length k. Prove that there is a permutation σ such that $\sigma\tau\sigma^{-1} = \mu$.

5 Conjugation computation

Let $\tau = (1234)$. (a) Let $\sigma = (135)(724)(89)$. Compute $\sigma\tau\sigma^{-1}$. (b) Let $\mu = (8275)$. Find a permutation σ such that $\sigma\tau\sigma^{-1} = \mu$.

6 Computation of cosets

- (a) List the left and right cosets of the subgroup $3\mathbb{Z}$ in \mathbb{Z} .
- (b) List the elements in the alternating group A_4 .
- (c) List the left and right cosets of the alternating subgroup A_4 in S_4 .

7 Lemma 6.3

Prove the following Lemma 6.3 in Judson Chapter 6: Let H be a subgroup of a group G and suppose that $a, b \in G$. The following conditions are equivalent.

- (1) aH = bH
- (2) $Ha^{-1} = Hb^{-1}$
- $(3) \ aH \subset bH$
- $(4) \ b \in aH$
- $(5) \ a^{-1}b \in H$

8 Conjugates and cosets

If $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$, prove that gH = Hg for all $g \in G$ (that is, prove that the left cosets are identical to the right cosets). (HW04)

9 Index

(a) Prove the set $H = \{ \text{Id}, (12)(34), (13)(24), (14)(23) \}$ is a subgroup of the symmetric group S_4 .

(b) What is its index in S_4 ?

10 Lagrange's Theorem

(a) Suppose G is a finite group with an element g of order 3 and an element h of order 5. Why must $|G| \ge 15$?

(b) Suppose G is a group of order 23. Describe G. Explain your answer.