(Document last updated: September 19, 2024)

1 Computation

1.1 Arithmetic

Suppose a, b, c are elements of a group G, and suppose |a| = 6 and |b| = 7. Express

$$(a^4c^{-2}b^4)^{-1}a^3$$

without using negative exponents.

Solution:

$$(a^4c^{-2}b^4)^{-1}a^3 = (b^4)^{-1}(c^{-2})^{-1}(a^4)^{-1}a^3 \text{ by the "socks-shoes" property} = b^3(c^{-2})^{-1}(a^2)a^3 \text{ since } b^4b^3 = b^7 = e \text{ and } a^4a^2 = a^6 = e = b^3c^2a^2a^3 \text{ after applying law of exponent } ((c^s)^r = c^{sr} \text{ for all } s, r \in \mathbb{Z}) = \boxed{b^3c^2a^5} \text{ after applying law of exponent } (a^sa^r = a^{s+r} \text{ for all } s, r \in \mathbb{Z})$$

1.2 If a group element x is such that $x^{24} = e$, what are the possible orders of x?

Solution: 1,2,3,4,6,8,12,24 (all the divisors of 24)

1.3 Draw the subgroup lattice of \mathbb{Z}_{24} .

Let
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$, and $\sigma = (126)(45) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 3 & 5 & 4 & 1 & 7 \end{bmatrix} \in S_7$

1.4 For each group below, if the group is finite, list all elements; if the group is infinite, describe all elements

1. $\langle 2D \text{ rotation by } 240^o \rangle$ 2. $\langle A \rangle$ 3. $\langle B \rangle$ 4. $\langle AB \rangle$ 5. $\langle \sigma \rangle$ 6. The symmetry group of a (non-square) rectangle, aka the "mattress group" from the first day

1.5 Match the groups from Question 1.4 with the groups below

(i) \mathbb{Z}_2 ____ (ii) \mathbb{Z}_3 ____ (iii) \mathbb{Z}_4 ____ (iv) \mathbb{Z}_6 ____ (v) \mathbb{Z} ____ (vi) $\mathbb{Z}_2 \times \mathbb{Z}_2$ ____

Solution:

(i) $\langle B \rangle$ is the same as \mathbb{Z}_2 (ii) $\langle 2D$ rotation by $240^{\circ} \rangle$ is the same as \mathbb{Z}_3 (iii) $\langle A \rangle$ is the same as \mathbb{Z}_4 (iv) $\langle \sigma \rangle$ is the same as \mathbb{Z}_6 (v) $\langle AB \rangle$ is the same as \mathbb{Z} (vi) The symmetry group of a (non-square) rectangle is the same as $\mathbb{Z}_2 \times \mathbb{Z}_2$

2 True or false

Let G denote a finite group. If the statement is true, give a proof. If it is false, give a counterexample.

2.1 For all elements $a, b \in G$, we have |ab| = |ba|

Solution: True. For a proof, see the sample proof in HW03.

2.2 For all elements $a, b \in G$, we have $|a| = |b^{-1}ab|$

Solution: True. A proof is part of your HW03.

2.3 For all elements $a, b \in G$, we have $|b| = |b^{-1}ab|$

Solution: False. For a counterexample, let $G = \langle x \rangle = \{e, x\}$ be the cyclic group of order two. The order of the identity element is 1 and the order of x is 2. Let a = x and let b = e. Then |b| = |e| = 1 and $|b^{-1}ab| = |e^{-1}xe| = |x| = 2$.

3 Union of subgroups

3.1 Prove that it is impossible for a group G to be the union of two proper subgroups.

(In your proof, don't assume that the group is finite)

Solution: A possible proof: For the sake of contradiction, suppose $G = A \cup B$, where A and B are both proper subgroups of G.

Since B is proper, there is $a \in G$ such that $a \notin B$. Since $G = A \cup B$, it must be that $a \in A$. Similarly, there is $b \in B$ such that $b \notin A$.

Since $a, b \in G$, the closure property tells us that $ab \in G$. Thus ab is in A or in B (since $G = A \cup B$). If $ab \in A$, we have $b = a^{-1}(ab) \in A$, which is a contradiction. So $ab \in B$. But this means $a = (ab)b^{-1} \in B$, which is again a contradiction.

3.2 Let G denote the rectangle (non-square) "mattress group" (the symmetry group of a non-square rectangle). Write G as the union of three proper subgroups.

Solution: Let *h* and *v* denote the horizontal and vertical flips, and let *r* denote the rotation by 180°. Then $\{Id, h\}, \{Id, v\},$ and $\{Id, r\}$ are all subgroups of *G*, and we have $G = \{Id, h\} \cup \{Id, v\} \cup \{Id, r\}$.

4 Subgroup

Find all subgroups of the symmetry group of the regular triangle (the "triangle mattress" group).