Let U(n) be the group of units in \mathbb{Z}_n with multiplication module n as binary operation, that is,

 $U(n) = \{x \in \mathbb{Z}_n : x \text{ has an inverse under }, \text{ multiplication modulo } n\} \\ = \{x \in \mathbb{Z}_n : x \text{ and } n \text{ are relatively prime, meaning gcd}(x, n) = 1\}$

1 Complete the Cayley table for U(10)

•	1	3	7	9
1				
3		9		
7		1		
9				

2 Order of group and each group element

2.1 U(10)

Find the order of the group U(10), and the order of each element in the group.

2.2 U(12)

Find the order of the group U(12), and the order of each element in the group.

2.3 Square mattress group

Find the order of the "square mattress" group D_4 , and the order of each element in the group.

2.4 Connection

Do you see a connection between the orders of the elements of a group and the order of the group?

3 Groups of order 8

Give an example of 3 different groups with 8 elements. Prove that all your three groups are different.

(Some possibilities for proving two groups are different: if G_1 is abelian and G_2 is not, then we know they are different; if G_1 has only one element of order 2 but G_2 has multiple elements of order 2, then we know they are different.)

4 Group of units of \mathbb{Z}_n

Let $n \ge 3$. Let U(n) be the group of units in \mathbb{Z}_n , that is, U(n). Prove that there is an element $k \in U(n)$ of order 2, that is, $k^2 = 1$ and $k \ne 1$.

5 Subgroup

Find all subgroups of the symmetry group of the regular triangle (the "triangle mattress" group).

6 Subgroup

Let H be a subgroup of G and let $g \in G$. Define gHg^{-1} to be the set $gHg^{-1} = \{ghg^{-1} : h \in H\}$. Prove that gHg^{-1} is a subgroup of G.