MATH 4210/5210 ALGEBRA PRACTICE WEEK 02

DO NOT SUBMIT

1. DEFINITIONS (TEXTBOOK SECTION 3.2)

- (1) Given sets A, B, write the definition of the Cartesian product $A \times B$ (See Textbook Section 1.2)
- (2) Write the definition of a binary operation on a set A
- (3) Write the definition of an associative binary operation
- (4) Write the definition of an identity element for a binary operation
- (5) Write the definition of a group
- (6) Write the definition of an inverse of an element a in a group (G, \star)

2. Textbook Proposition 3.21

Let G be a group, and let $a, b \in G$.

- (1) Prove that the equation ax = b has a solution in G and the solution is unique
- (2) Prove that the equation xa = b has a solution in G and the solution is unique
- *Proof.* (1) (Exercise for student, or see Textbook's Proof of Prop. 3.21)
 - (2) First, we show that such an x exists. We see that a^{-1} , the inverse of a, exists in G (by property of a group). We also see that $ba^{-1} \in G$ by the closure property. Set $x = ba^{-1}$. Then

$$xa = (ba^{-1})a = b(a^{-1}a) = be = b,$$

so x is a solution in G.

To show that this solution is unique, suppose that x_1 and x_2 are both solutions of xa = b. Then $x_1a = b = x_2a$. So we have

$$x_{1} = x_{1}(aa^{-1})$$

= $(x_{1}a)a^{-1}$
= ba^{-1}
= $(x_{2}a)a^{-1}$
= $x_{2}(aa^{-1})$
= x_{2}

This concludes the proof that the solution is unique.

3. Abelian and non-abelian groups

3.1. Square mattress group. Consider the "Mattress Group" (see week 1 class notes). Since the mattress is in a non-square rectangle bed frame, there are exactly four transformations that can be done to the mattress (the identity, the 180° rotation, the horizontal flip, and the vertical flip). Observe that $t_1t_2 = t_2t_1$ for all transformations t_1, t_2 .

Now, suppose your mattress is a square mattress in a square bed frame.

- (1) List all the transformations that can be done to this square mattress.
- (2) Give an example of two transformations t_1, t_2 such that $t_1t_2 \neq t_2t_1$. (This means the "Square mattress" group is not abelian).

Date: Last updated: September 8, 2024.

3.2. Group of bijections (from Group Quiz 01). Consider the set G of all bijections $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$. Then G is a group under function composition \circ .

Is (G, \circ) abelian? (If so, prove it. Otherwise, show that the group operation is not commutative by finding two elements $a, b \in G$ such that $ab \neq ba$.)

3.3. Section 3.5 Exercise 31. Suppose G is a group and $a^2 = e$ for all elements $a \in G$. Prove that G is abelian.

Proof. (See Appendix B Hints and Answers to Selected Exercises)

4. RIGHT AND LEFT CANCELLATION

Let G be a group, and let $a, b, c \in G$.

- (1) (Right cancellation) Prove that ba = ca implies b = c.
- (2) (Left cancellation) Prove that ab = ac implies b = c.

Proof. (1) Suppose
$$ba = ca$$
. Multiply on the right by a^{-1} :

$$(ba)a^{-1} = (ca)a^{-1}$$

Associativity give us

$$b(aa^{-1}) = a(a^{-1})$$
$$be = ce$$
$$b = c$$

(2) (Exercise for student)

5. Section 3.5 Exercise 7

Let $S = \mathbb{R} \setminus \{-1\}$. Define a binary operation on S by $a \star b = a + b + ab$. Show that (S, \star) is an abelian group.

(1) Prove that this is indeed a binary operation on S, that is, show that if $a, b \in S$ then $a \star b \in S$

(2) Prove that \star is associative

(3) Prove that S contains the identity of \star

(4) Prove that every element in S has an inverse under \star

Proof. (1) For the sake of contradiction, suppose that S is not closed under \star . So there exist $a, b \in S$ such that $a \star b \notin S$, that is, $a \star b = -1$. Then

$$-1 = a + b + ab$$

So we have

$$0 = 1 + a + b + ab$$

= (1 + a) + b(1 + a)
= (1 + b)(1 + a)

Therefore, either 1 + b = 0 or 1 + a = 0. This implies b = -1 or a = -1, which contradicts the fact that $a, b \in S$. Hence S is closed under \star .

- (2) (Prove that $(a \star b) \star c = a \star (b \star c)$ for all $a, b, c \in S$)
- (3) (What is the identity e for \star ? Prove that $e \star a = a = a \star e$ for all $a \in S$.)
- (4) (Give a formula for the inverse of each $a \in S$ under \star , and prove that this element is also in S.)

6. Odd integers (from group quiz 01)

Prove that the set of odd integers under addition is not a group.

Proof. The identity of addition is 0, which is not in the set of odd integers. (This fails the property of having an identity element.) \Box

Another possible proof. The set of odd integers is not closed under addition. For example, 1 and 3 are both in the set, but 1 + 3 = 4 is not. (This fails the closure property.)