Last updated: Dec 6, 2024 Abstract Algebra Notes Week 14 Wed, Dec 4 2024

MATH CLUB @UML ! Math enthusiasts interested in becoming part of the leadership board should email: @ Lee, Cori (Math office manager) @ Frank, Emmett B. (Math major)

Today Quiz Lecture maximal ideal Group guiz part I Lecture prime ideal Group guiz part I

Kecal(Lemma 6.3 (about cosets) (Written on the board during quiz) S+I= t+I iff t e s+I iff t-s e I

Ideal test Recall A subset I is an ideal of R if: * I is an additive subgroup of R * If a E I and r E R then both ar and ra are in I. "the absorbing property of I"

Ex 12 (Ch 14 Gallian) Motivating Example
Let R [X] denote the ring of polynomials wy real coefficients
Let
$$I = \langle x^2 + 1 \rangle$$

 $= \{ f(x) (x^2 + 1) : f(x) \in \mathbb{R} [x] \}$,
the principal ideal generated by $x^2 + 1$.

The quotient
$$R[x] = \left(g(x) + I : g(x) \in R[x] \right)$$
 by def

Note 1:

If $g(x) \in |k[x]|$, then we can write $g(x) = q(x)(x^2+i) + r(x)$ where r(x) is the remainder when dividing g(x) by x^2+1 . So r(x)=0 or the degree of r(x) is less than 2. So r(x)=ax+b for some $a, b \in \mathbb{R}$. So we can write each coset g(x) + T as $g(x) + \langle x^2+1 \rangle = \frac{g(x)(x^2+i)+r(x)}{i} + \langle x^2+1 \rangle$ $= r(x) + \langle x^2+1 \rangle$ $= r(x) + \langle x^2+1 \rangle$ $f(x) + \frac{1}{2} = \frac{1}{2} (ax+b) + T$ is $a, b \in \mathbb{R}$? Note 2: $x^2 - (-1) = x^2 + 1 \in T$, so $x^2 + T = -1 + \langle x^2 + 1 \rangle$ $f(x) + \frac{1}{2} = -1$ in C

Proof Consider the evaluation homomorphism $q: R[x] \rightarrow C$ defined by $\Psi(p(x)) = p(i)$ Then $x^2 + 1 \in \ker \varphi$ since $i^2 + 1 = 0$. In fact, $\ker \varphi = \langle x^2 + 1 \rangle$. The map φ is surjective since for any a + bi where $a, b \in \mathbb{R}$, we have $\Psi(a + bx) = a + bi$. By the 1st Isomorphism Thm, $R[x] \rightarrow C$.

Fecall from Sec 16.3 Fact: ("If an ideal contains unity, it is not proper") Let R be a ring with unity 1. If I is an ideal of R and 16 I, then I = R.

Lemma 1 (to be used to prove Thm 16.35 and
$$\operatorname{Prop} 16.38$$
)
Let R be a commutative ring with unity 1,
and I a proper ideal of R.
Then R/I is a commutative ring with unity 1+I.

We will characterize certain ideals and guotient rings of commutative rings

- <u>Def</u> Let M be an ideal of a ring R. Then M is a maximal ideal of R if: * M is a proper ideal (meaning $M \neq R$)
 - * For any ideal I of R containing M, either I=M or I=R (meaning, M is not a proper subset of any ideal of R except R itself)

$$\frac{\text{Thm}}{\text{Assume R is a commutative ring with unity}}.$$

$$(\text{Thm})$$

$$(6.35)$$
Let M be an ideal of R. Then
$$M \text{ is a maximal ideal of R iff } R/M \text{ is a field}.$$

Proof (Proof of "=>" forward direction) See book
(Proof of "
$$\Leftarrow$$
" backward direction) Suppose R/M is a field.
So the zero element Q+M=M and the unity elt 1_R+M
are two distinct elts. This means that M≠R, so M is
a proper subset of R.
Next, we show the maximal property of M:
Let I be an ideal of R containing M. If I=M, then we are done.
So suppose M \subseteq I. (Note to self: Goal is to show I=R)

Since $M \not\subseteq I$, there is an elt $a \notin I$ but $a \not\notin M$. So a + M is a nonzero elt in P/M. Since P/M is a field, there exists an elt b + M in P/Msuch that

$$(a+M) (b+M) = ab+M = 1+M.$$

So $1 \in ab + M$, that is, 1 = ab + m for some $m \in M$. Since $a \in I$ and $b \in R$, $ab \in I$ (by "absorbing" property of ideals) Since $m \in M \subset I$, $m \in I$ So $ab + m \in I$ (since an ideal is a subring and so is closed under addition). Therefore $r1 = r \in I$ for all $r \in R$. Hence $I = R_{II}$

$$\frac{\text{Example}}{(\xi_{16.36})} \quad \text{If } p \text{ is prime}, \quad \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_{p} \text{ is a fred},$$

$$(\xi_{16.36}) \quad \text{so } p\mathbb{Z} \text{ is a maximal ideal of } \mathbb{Z}.$$

$$(\xi_{xample}) \quad \mathbb{Z} \text{ is a maximal ideal of } \mathbb{Z}.$$

$$\frac{E \times ample}{(it's not an integral domain)}, is$$

$$n \mathbb{Z} \quad is not a maximal \quad ideal$$

$$E \times ample: \quad b \mathbb{Z} \qquad C \qquad S \mathbb{Z}$$

$$\left\{ \vdots, 569, 6, 12, \dots \right\} \qquad \left\{ \ldots, 76, -3, 0, 3, 6, 7, 12, \dots \right\}$$

Kecall week II notes
The set
$$J = [f(x) \in \mathbb{Z}[x] : f(c)]$$
 is an even integer]
is an ideal of $\mathbb{Z}[x]$. We see $\langle x \rangle \subsetneq J$
for example $X+2 \in J$ but not in $\langle x \rangle$.
So $\langle x \rangle$ is not a maximal ideal of $\mathbb{Z}[x]$.
 $= end part I$

Def Let R be a commutative ring, and let P be an ideal of R. Then P is a prime ideal of R if: * P is a proper ideal (meaning $P \neq R$) * whenever $ab \in P(for a, b \in R)$, either $a \in P$ or $b \in P$ Example $P = \{0, 2, 4, 6, 8, 10\}$ is a prime ideal in \mathbb{Z}_{12} . Pf Suppose ab EP. Then ab is even. Then either a is even or b is even, Example $P = \langle x \rangle = \{f(x) \mid x : f(x) \in \mathbb{Z}[x]\}$ is a prime ideal in Z[x] (note: earlier we said (x) is not maximal in Z[x]) $Pf \quad Observe \quad that \quad \langle x \rangle = \left[g(x) \in \mathbb{Z}[x] : g(0) = 0 \right].$ Let a(x), b(x) E Z(x]. constant term of g(x) is 0 Suppose $a(x)b(x) \in P$, then a(o) b(o) = 0. Since a(x), b(x) & Z[x], we know the constant terms of a(x) and b(x), 9(0) and 6(0) ave integers. Since Z is an integral domain, either a(o) = 0 or b(o) = 0. So either a(x) EP or b(x) E P. I

$$\frac{\operatorname{Prop}}{\operatorname{(Bry 16.57)}} \operatorname{Let} R \ be a \ commutative rig with unity 1,
(Bry 16.57) and P an ideal of R.
Then P is a prime ideal iff R/P is an integral domain.
$$\frac{\operatorname{Proof}}{\operatorname{(First, prove "=>" forward direction)}}$$
Suppose P is a prime ideal. Then P is proper.
So R/P is a commutative ring with unity 1tP
by Lemma 1. So we only need to show R/P
has no zero divisors.
Suppose
(a+P)(b+P)= ab+P= D+P= P.
Then ab \in P. Since P is prime, either a \in P or b \in P.
So either a $+P = 0+P$ or $b+P = 0+P$
(that is, either atP or $b+P = 0+P$
(that is, either atP or $b+P = 0+P$
(Next, prove "=" backward direction)
Assume R/P is an integral domain.
Suppose a, $b \in R$ and $ab \in P$.
Then
 $(a+P)(b+P) = ab+P = P$,
the zero eit of R/P.
Since R/P is an integral domain, it has no zero divisors,
is either $a+P = 0 + P = P$, it either $a \in P$ or $b + P = 0$.
 $Ab = P(b+P) = ab + P = P$,
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either for here P = P$.
 $Ab = 2 \operatorname{ero} either f$$$

<u>Ex</u> If R is an integral domain then R/{03 is an integral domain. So {03 is a prime ideal of R.

Ex Every ideal in Z is of the form
$$nZ$$
.
The quotient ring $Z'_{nZ} \cong Z_n$ is an integral
domain iff n is prime
(in fact, Z'_{nZ} is a field iff n is prime).
So the prime ideals of Z are
 PZ for P prime
and the zero ideal (63.

Note: This justifies the use of the word "prime" in the def of prime ideals.

(Sfi documents will be available to instructors starting Dec 31)