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Math enthusiasts interested in becoming part of
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Lee Cori math office manager

Frank Emmett B Math major

Iday Quiz Nextweek Quiz

Lecture maximal ideal Brief lecture
Group quiz part I Review

Lecture prime ideal
Group quiz part

Recall
Lemma 6.3 about cosets written on the board

during quiz
S I t I iff t E stI iff t S E I

Ideal test

A subset I is an ideal of R if

I is an additive subgroup of R

If at I and re R then both ar and ra are in I

the absorbing property.FI



Ex 12 Ch 14 Gallian Motivating Example
et IR denote the ring of polynomials

w real coefficients

Let I 4 41

fix x't fax RE

the principal ideal generated by
2 1

The quotient REI get I gas R by def

Note 7

If gex IR x then we can write

g x q k
2 17 rex

where rk is the remainder when dividing g 1 by 1

So rix1 o or the degree of re is less than 2

So rk axtb for some a be IR

So we can write each coset gex I as

1I 41 eee 44ns

Ix
2
1

the ideal 2 1 absorbs the term gas 1
2 1

so RCI x b I a ber

Note 2 x2 1 2 1 I so X I 1 x 1

Compare this with how it 1 in



Prop e a field

Proof Consider the evaluation homomorphism

Q IREx defined by

p x1 p i

Then 2 1 E Ker since 12 7 0

In fact Kev a 2 1

The map a is surjective since

for any atbt where a bt IR

we have a a bx at bi

By the 1st Isomorphism Thm

REI 4

Recall from Sec 16.3

Fact If an ideal contains unity it is not proper

Let R be a ring with unity 1

If I is an ideal of R and I I then I R

Lemma 1 to be used to prove Thm 16.35 and Prop 16.38

Let R be a commutative ring with unity 1

and I a proper ideal of R

Then R I is a commutative ring with unity I I



Sec 16.4 Part I maximal ideals

We will characterize certain ideals and quotient rings
of commutative rings

Def Let M be an ideal of a ring R Then M is a maximal ideal of R if

M is a proper ideal meaning M R

For any ideal I of R containing M either I M or I R

meaning M is not a proper subset of any ideal of R except R itself

Thm
Assume R is a commutative ring with unity

Thm
16.35 Let M be an idealof R Then

M is a maximal ideal of R iff RM is a field

Proof Proof of forward direction see book

Proof of E backward direction Suppose RM is a field

So the zero element QtM M and the unity elt Ip M

are two distinct elts This means that MFR so M is

a proper subset of R

Next we show the maximal property of M

Let I be an ideal of R containingM If I M then we are done

So supposeM EI Note to self Goal is to show I R



Since M FI there is an elt af I but a M

So at M is a nonzero elt in R M

Since RM is a field there exists an elt b M in RM

such that

atm b M ab M 1 4

So I abt M that is I abtm for some m EM

Since at I and be R ab EI by absorbing propertyof ideals

Since me MCI ME I

So abt me I since an ideal is a subring and so is closed
under addition

Therefore r1 rE I for all re R Hence I R

Ex If R is a field then Ray is a field
so the zero ideal is a maximal ideal



Recall Sec 16 2

Thm 16.16 Every finite integral domain
is a field

Example 16.17 For every prime p

Ip is a field

Example If p is prime Z pz Zp is a fred
Ex16.36

so pz is a maximal ideal of 2

Example 22 is a maximal ideal of 2

Example If n is not prime
2
2 Zn is not a field

it's not an integral domain so

nZ is not a maximal ideal

Example 62 C 32

569,6 12 653,013,6 9,12

Recall week 11 notes

The set fate Z fco is an even integer

is an ideal of ZCx We see x J

for example 2 FJ but not in

So x is not a maximal ideal of Z x

end part I



Sec 16.4 Part I Prime ideals

Def Let R be a commutative ring and let P be an ideal of R

Then P is a prime ideal of R if

P is a proper ideal meaning P R

whenever abe P for a be R either at P or bep

Example P 012,4 6,8 10 is a prime ideal in 212

If Suppose ab E P Then ab is even

Then either a is even or b is even

Example P x fax FNEZE
is a prime ideal in Z x

note earlier we said x is not maximal in 263

Pf Observe that x 9k E ZE g o 0

Let a x b E ZE constanttermof 9k is 0

Suppose a x b x E P then a o b o 0

Since a x box Z x we know

the constant terms of a x and b x

9607 and b o

are integers
Since 2 is an integral domain

either a o 0 or b c 0

So either an EP or b E P



Prop Let R be a commutative ring with unity 1
Prop16.38 and P an ideal of R

Then P is a prime ideal iff RIP is an integral domain

Proof First prove forward direction

Suppose P is a prime ideal Then P is proper
So RIP is a commutative ring with unity P

by Lemma 1 So we only need to show R P

has no zero divisors

Suppose
P b p ab P O P P

Then abe P Since P is prime either at P or be P

So either a P Ot P or b P Ot P

that is either atp or btp is the zero elt in R p

So RIP has no zero divisors

Next prove backward direction

Assume RIP is an integral domain

Suppose a bER and ab E P

Then
p b p abt P P

the zero elt of R P

Since R P is an integral domain it has no zero divisor

so either atP P or b p P i e either a EP or be P

So P is primed



Ex If R is an integral domain then Roz is an integral domain
So 03 is a prime ideal of R

Every ideal in 2 is of the form n 2

The quotient ring 212 In is an integral
domain iff n is prime

in fact Z n2 is a field iff n is prime

So the prime ideals of 2 are

PZ for p prime
and the zero ideal 03

Note This justifies the use of the word prime
in the def of prime ideals
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