Last updated: Dec b , 2024 Abstract Algebra Notes Week 14 Wed, Dec 4 2024

MATH CLUB \odot uML $^!$ Math enthusiasts interested in becoming part of the leadership board should email Q Lee, Cori (Math office manager) (a) Frank, Emmett B. (Math major)

Iday Quiz Nextweek Quiz Lecture maximal ideal Brief lecture Group quiz part I Lecture prime ideal b roup quiz part π

Recall
Lemma 6.3 (about Cosets) (Written on the board $s + I = t + I$ iff $t \in s + I$ iff $t-s \in I$

Ideal test A subset I is an ideal of R if: I is an additive subgroup of R * If a ϵ I and $r \in R$ then both ar and ra are in I. $"$ the absorbing property of \mathcal{I}''

$$
E_{x} 12 (Ch 14 Gallian) Mofivating Example
$$
\n
$$
Let R [x] denote the ring of polynomials by real coefficients
$$
\n
$$
Let I = \langle x^{2}+1 \rangle
$$
\n
$$
= \{ f(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1) : f(x) \in R[x] \},
$$
\n
$$
= \{ h(x) (x^{2}+1
$$

The quotient
$$
R[x]
$$
 = { $g(x) + I : g(x) \in R[x]$ } by def

Note 1:

If $g(x) \in \mathbb{R}$ $[x]$, then we can write $g(x) = g(x) (x^2 + 1) + r(x)$ where $r(x)$ is the remainder when dividing $g(x)$ by x^2+1 . S_{∞} $r(x)=0$ or the degree of $r(x)$ is less than 2. So $r(x)$ = $a x + b$ for some $a, b \in \mathbb{R}$. So we can write each coset $g(x)$ + \mathcal{I} as $g(x) + \langle x^2 + 1 \rangle = 0$ (x²+1) + r(x) + $\langle x^2 + 1 \rangle$ $=$ $\gamma(x)$ + $\langle x^2 + 1 \rangle$ the τ deal $\langle x^2+1 \rangle$ absorbs the term $9^{(x)}(x^2+1)$ $So R \frac{[x]}{I} = \left\{ (ax + b) + I : a, b \in \mathbb{R} \right\}$ N otc 2: $X^2 - (-1) = X^2 + 1 \leq \pm 1$, so $X^2 + \pm 1 = -1 + \langle X^2 + 1 \rangle$ Compare this with how 1^2 = -1 in \mathbb{C}

$$
\frac{Pr_{o}}{K} \xrightarrow{R[x]} \mathbb{Z} \subseteq C , \quad a \text{f:} \text{cl}
$$

Proof Consider the evaluation homomorphism $\varphi: \mathbb{R}[\mathsf{x}] \longrightarrow \mathbb{C}$ defined by $\varphi(\rho(x)) = \rho(i)$ Then x^2+1 E ker Q since $i^2+1=0$. In fact, $ker \varphi = \langle x^2 + 1 \rangle$ The map ^a is surjective since for any $a+b$ ⁷ where $a, b \in \mathbb{R}$, We have $\theta (a + bx) = a + b \overline{\theta}$. B_{4} the 1st Isomorphism Thm, $R[x] \underset{\langle x^2+1 \rangle}{\longrightarrow} \cong \mathbb{C}.$

Recall from Sec 16.3 Fact If an ideal contains unity it is not proper Let ^R be ^a ring with unity ¹ If I is an ideal of ^R and ^I ^I then ^I ^R

Lemma 1 (to be used to prove Thm 16.35 and Prop16.38)
Let R be a Commutative ring with unity 1,
and I a proper ideal of R.
Then
$$
\hat{R}/I
$$
 is a commutative ring with unity 1+I.

$$
Sec (6.4)
$$
 Part \top : maximal ideals

We will characterize certain ideals and quotient rings of commutative rings

- Def Let ^M be an ideal of ^a ring ^R Then ^M is ^a maximal ideal of ^R if $*$ M is a proper ideal (meaning $M \neq R$) * For any ideal I of R containing M, either $I = M$ or $I = R$
	- meaning ^M is not ^a proper subset of any ideal of ^R except ^R itself

$$
\begin{array}{ll}\n\text{Thm} & \text{Assume } R \text{ is a commutative ring with unity.} \\
(\text{Thm} & \text{[6.35)} \text{ Let } M \text{ be an ideal of } R. \text{ Then} \\
\text{M is a maximal ideal of } R \text{ iff } B/M \text{ is a field.}\n\end{array}
$$

Proof (Proof of "
$$
\Rightarrow
$$
" forward direction) See book
\n(Proof of " \Leftarrow " backward direction) Suppose RM is a field.
\nSo the zero element Q+M=M and the unity elf 1_{R+}M
\nare two distinct elts. This means that M \neq R, so M is
\na proper subset of R.
\nNext, we show the maximal property of M:
\nLet I be an ideal of R containing M. If I=M, then we are done.
\nSo suppose M \subsetneq I. (Note to self: goal is to show I=R)

Since $M \subsetneq I$, there is an elt $a \in I$ but $a \not\in M$. So $a + M$ is a nonzero elt in R/M . Since M is a field, there exists an elt $b+M$ in M such fhat

$$
(a+M) (b+M) = ab+M = 1+M.
$$

 S_{o} 1 \in ab + M, $+$ $+$ Ts, 1 = ab + m $-$ for some m \in M. Since $a \in I$ and $b \in R$, $ab \in I$ (by "absorbing" property of ideals) Since $m \in M \subset I$, $m \in I$ So abt me ^I since an ideal is ^a subring and so is closed under addition Therefore $r1 = r \in I$ for all $r \in R$. Hence $I = R_{\Pi}$

$$
\{x: \text{ If } R \text{ is a field, then } R / \{0\} \text{ is a field,}
$$

So the zero ideal is a maximal ideal.

Recall Sec 16 ² Thm 16.16 Every finite integral domain is ^a field Example 16.17 For every prime ^p Ip is ^a field

Example If
$$
p
$$
 is prime, $\mathbb{Z}_{p\mathbb{Z}} \cong \mathbb{Z}_{\dagger}$ is a fixed,

\n(&16.36)

\nso $p\mathbb{Z}$ is a maximal ideal of \mathbb{Z} .

\nExample: $2\mathbb{Z}$ is a maximal ideal of \mathbb{Z} .

Example	If n is not prime, $z_{n} \geq z_{n}$ is not a field		
(if(s not an integral domain))	10		
n z 7s not a maximal ideal			
Example:	6 z	C	3 z
$\{.560, 6, 12, ... \}$	$\{\ldots, 6, 3, 6, 7, 12, ... \}$		

Recall week II notes	
The set	$J = \int f(x) \in \mathbb{Z}[x] : f(0)$ is an even integer
is an ideal of $\mathbb{Z}[x]$. We see $\langle x \rangle \subsetneq J$	
for example	$x + 2 \in J$ but not in $\langle x \rangle$.
So $\langle x \rangle$ is not a maximal ideal of $\mathbb{Z}[x]$,	
end part I	

$$
\begin{array}{|c|c|c|c|c|c|}\n\hline\n\text{Sec} & & & & \\
\hline\n\end{array}
$$
 Part II: Prime ideals

Def Let R be a commutative ring, and let P be an ideal of R. Then P is a prime ideal of R if: $*$ P is a proper ideal (meaning $P \neq R$) * whenever abe $P(for a, b \in R)$, either $a \in P$ or $b \in P$ Example $P = \{0, 2, 4, 6, 8, 10\}$ is a prime ideal in \mathbb{Z}_{12} . P_f Suppose ab EP. Then ab is even. Then either a is even or b is even. E xample $P = \langle x \rangle = \{f(x) \times f(x) \in \mathbb{Z}[x]\}$ is a prime ideal in $\mathbb{Z}[\times]$ $($ note: earlier we said $\langle x \rangle$ is not maximal in $\mathbb{Z}[x]$ If Observe that $\langle x \rangle = \int f(x) \in \mathbb{Z}[x]$ g(0)=0 Let $a(x)$, $b(x) \in \mathbb{Z}[x]$ constant term of $g(x)$ is 0 Suppose $a(x)b(x) \in P$, then $a(o) b(o) = o$. Since $a(x)$, $b(x) \in \mathbb{Z}$ [x], we know the constant terms of $a(x)$ and $b(x)$, $a(o)$ and $b(o)$ are integers. Since Z is an integral domain, $e^{\int f \cdot f \cdot d\mathbf{r}}$ a $(0) = 0$ or $b(0) = 0$. So either $a(x) \in P$ or $b(x) \in P$.

Prop	Let R be a Commutative ring with unity 1,
($Rep 18.39$) and P an ideal of R.	
Then P is a prime ideal iff Rep is an integral domain.	
Propose P is a prime ideal. Then P is proper.	
Suppose P is a prime ideal. Then P is proper.	
So R/P is a commutative ring with unity 1+f P	
by Lemma 1. So we only need to show R/P	
has no zero divisors.	
Suppose	$(a+P)(b+P) = ab+P = 0+P + P$
Then $ab \in P$. Since P is prime, either acP or bcP .	
So either $a+P=0+P$ or $b+P=0+P$	
($4h$ is, either $a+P=0+P$ or $b+P=0+P$	
($4h$ is, either $a+P=0+P$ or $b+P=0+P$	
($4h$ is, either $a+P=0+P$ or $b+P=0+P$	
($4h$ is, $6h$ is an integral domain.	
Example 4, Rep is an integral domain.	
Suppose R/P is an integral domain, it has no zero divisor, so either $a+P=P$ or $b+P=P$, i.e. either $a \in P$ or $b \in P$.	
So P is prime	
So P is prime	

 $\frac{EX}{C}$ If R is an integral domain. Then R/G is an integral domain, So 03 is ^a prime ideal of ^R

Ex Every ideal in
$$
Z
$$
 is $+4k$ form nZ .

\nThe quotient ring $Z/nZ \cong Z_n$ is an integral domain iff n is prime.

\n $\begin{bmatrix} \n\text{in fact, } Z/nZ \n\end{bmatrix}$ is a field iff n is prime.

\nSo the prime ideals of Z are

\n PZ for P prime

\nand the zero ideal $\begin{bmatrix} 63 \end{bmatrix}$.

 $\frac{N_{\text{o}}}{e}$: This justifies the use of the word "prime" in the def of prime ideals

SFI Student feedback on instruction

www.uml.edu sfi deadline Dec ²⁰

Sfi documents will be available to $instructorS$ starting $Dec 31)$