Last update, Nov 23, 2024

\nAbstract Algebra Notes West 12 Med, Nov 20 2024

\nSection: Let A be a subring of a ring R, r6R

\nNotation: Let A be a subring of a ring R, r6R

\nY+A
$$
\stackrel{def}{=}
$$
 {r+a: a6A} called cosets of A R/A $\stackrel{def}{=}$ {cscets of A in R}

\n= {r+A : r6R}

\nNote: Since (R,t) is an abelian group and every subring A is a normal subgroup of (R,t), R/A is a θ quotient group under the operation (S+A) + (t+A) = (s+t) + A

\n(Review Sec. 10.1)

\nWhen is R/A also a ring with multiplication by fixed as (s+A)(t+A) = st+A ?

\nRecall (1.3 (about cosets) s+A = t+A iff t-6 s+A iff t-5 s6A

 Thm Let I be an ideal of a ring R. $(Thm 16.29)$ The additive quotient group R/I is also ^a ring with multiplication defined by $(s+L)(t+I) = st + I$. Def This ring is called ^a quotient ring Idea of proof We need to show that the product $(s+1)(t+1)$ = st + I is independent of the choice of coset representatives. $(meaning$ the multiplication operation is well-defined) $Suppose s'e s+f and t'e t+f.$ $(G_{\text{val}}: \text{Show } s't' + \mathcal{I} = st + \mathcal{I})$ Stroup Since $s' \in s + 1$, we have $s' = s + a$ for some $a \in I$ Similarly, we have t' = $t+b$ for some $b \in I$. Then $s' + f = (s+a)(t+b) = s+t + s + a t + ab$. We have sb , at , $ab \in I$ because $a,b \in I$ and ^I satisfies the absorbing property So $s't' \in st+I$. Thus $s' t' + \mathbb{I} = st + \mathbb{I}$, as needed

$$
\frac{Ex}{4z} = \{0+4z, 1+4z, 2+4z, 3+4z\}
$$

is a quotient ring.

$$
(2+4z) + (3+4z) = 5+4z = 1+4+4z=1+4z
$$

$$
(2+4z) (3+4z) = 6+4z = 2+4+4z=2+4z
$$

$$
\begin{array}{ll}\n\text{Ex} & \text{Let} & \text{R} = M_{at} \text{CZ} \\
\text{let} & \text{L} = \text{Mat}_{2}(Z) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z} \right\} \text{ and} \\
\text{let } I & \text{be the ideal of R consisting of matrices} \\
\text{with even entries.} & \text{Quint} \\
\text{Quint} & \text{Quint} \\
\end{array}
$$

$$
\begin{bmatrix} \frac{7}{5} & \frac{8}{-3} \end{bmatrix} + \mathbb{I} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} b & 8 \\ 4 & -4 \end{bmatrix} + \mathbb{I} = \begin{bmatrix} 10 \\ 11 \end{bmatrix} + \mathbb{I}.
$$

Exercise: Show $N_{\perp} = \begin{cases} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \mathbb{I}: a, b, c, d \in \{0, 1\} \end{cases}$
So R/\mathbb{I} has $|b = 2^4$ e $1 \in S$.

 \rightarrow Group quiz part I

 Ex Let $R[x]$ denote the ring of polynomials xy $E(x)$ real coefficients, and consider the

> principal ideal $\langle x^2+1\rangle$ generated by x^2+1 $\frac{1}{2} \left\{ \begin{array}{ll} x^2 + 1 \\ y^2 + 1 \end{array} \right\} = \left\{ \begin{array}{ll} 3(x) + \langle x^2 + 1 \rangle & \text{if } 3(x) \in \mathbb{R} \text{ [x]} \right\} \end{array}$

We will show later flat this quotient ring is isomorphic to C (Cauchy 1847) Part $\overline{\mathbb{V}}$: First Isomorphism Theorem

×

 ϵ

Note (Real from Sec 11.2)	
the natural or canonical homomorphism of groups	
$T: R \rightarrow R/L$	
$r \mapsto r+I$	
$T: R \mapsto R/I$	
$T \mapsto r+I$	
T th term 16.30	
T th map $T: R \Rightarrow R/I$	
$r \mapsto r+I$	
is a ring homomorphism from R onto R/I	
with kernel I.	
Pf	The note above tells us
T is surjective, is a group homomorphism, and has kernel I.	
It remains to show that T PPServes multiplication.	
Let $s, t \in R$. Then	
$T(s) \pi(t) = (s+I)(t+I) = st+I = \pi(st)$	

First Isomorphism Thm Thm 16.31

Let
$$
f: R \rightarrow S
$$
 be a ring homomorphism.
\nLet K denote ker f .
\nLet $i: R_K \rightarrow S$ be defined by
\n $r+K \mapsto f(r)$ for all $r+K \in R/K$
\nThen *i* is an injection $R_K \rightarrow S$.
\nIn particular, we have an isomorphism given by *i*
\n $R_K \cong m +$ the **upshot**
\nFurthermore, $f = i \underbrace{r \overline{r}}_{t/c}$
\n $R \rightarrow R_{kcr}f$
\nThe diagram
\n $\underbrace{r \rightarrow R_{kcr}f}_{t/c}$
\nThe diagram
\nillustrates the 1st isomorphism. Then.
\nWe say "the diagram commutes" to mean $f = i \circ \pi$.
\nNote *may* the *trig* is an *composition*
\ncan be written as a composition

(1-1 homomorphism) o (onto homomorphism).
\nEx
$$
\varphi
$$
: $\mathbb{Z}[x] \rightarrow \mathbb{Z}$ defined by $\varphi(p(x)) = p(o)$
\nker $\varphi = \langle x \rangle = \{f(x) \times : f(x) \in \mathbb{Z}[x] \}$
\nBy 1st (somorphism Thm, $\mathbb{Z}[x] \rightarrow \mathbb{Z}$
\n \rightarrow Group $qui \geq part \mathbb{T}$