Last updated: Nov 7, 2024

Abstract Algebra Notes Week 10 Wed, Nov 6 2024

- <u>Def</u> A nonempty set R together with two binary operations, additions and multiplication,
 - is a ring if the following holds.

2. Multiplication is associative

This means:

$$(ab)c = a(bc)$$
 for $a, b, c \in R$

3. The following distributive property holds.

For $a, b, c \in R$,

Def

R is a <u>ring with unity</u> or <u>with identity</u> if
there is an elt 1 G R such that
1 ≠ 0 and 1a = a1 = a for each a ∈ R
R is a <u>commutative ring</u> if ab=ba for all a, b ∈ R
(if multiplication is commutative)

 $\frac{\text{Def}}{\text{Def}} \quad \text{An elt } a \in \mathbb{R} \text{ is } a \xrightarrow{\text{zero divisor}} \text{ if}$ $\cdot a \xrightarrow{\text{is not the zero elt}}$ $\cdot \text{ there is a nonzero elt } b \in \mathbb{R} \text{ such that } ab = D$ $\frac{\text{Def}}{\text{Def}} \quad A \text{ nonzero elt } a \in \mathbb{R} \text{ where } \mathbb{R} \xrightarrow{\text{is } a \xrightarrow{\text{ring with unity}}}$

is a <u>unit</u> if there exists a unique elt $\overline{a}^{\dagger} \in \mathbb{R}$ such that $\overline{a}^{\dagger} a = a \overline{a}^{\dagger} = 1$.

Def

- A commutative ring with unity R is called an <u>integral domain</u> if R has no zero divisor.
- A ring with unity R is a division ring if every nonzero elt in R is a unit
- · A division ring which is commutative is a field

Ex of fields:

Q, R, C under the ordinary addition and multiplication

Ex \mathbb{Z}_n with the usual addition and multiplication mod n is a commutative ring with unity 1. The set of units is $U(n) = \{nonzero \ a \in \mathbb{Z}_n : gcd(a,n) = 1\}$

Ex In
$$\mathbb{Z}_{12}$$
, we have $3.4 = 0$.
So 3 and 4 are zero divisors.
 \mathbb{Z}_{12} is a commutative ring which is not an integral domain

and multiplication

(fg)(x) = f(x)g(x) (called "point-wise multiplication") forms a commutative ring with unity. The unity is the constant function 1 The zero elt is the constant function 0.

$$\underbrace{\mathsf{Ex}}_{2} (\mathbb{R}) = \left\{ 2 \times 2 \text{ matrices with entries in } \mathbb{R} \right\}$$

$$\begin{aligned} & \text{forms a non-commutative ring with unity} & \text{under the} \\ & \text{usual matrix addition and matrix multiplication.} \\ & \text{The unity is} \left[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right] \\ & \text{The zero eit is} \left[\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right] \\ & \text{Mat}_{2}(\mathbb{R}) & \text{has zero divisors, e.g.} \left[\begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \left[\begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix} = \left[\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right] \end{aligned}$$

$$\frac{\text{Prop of rings}}{(\text{Prop 16.8})} \quad \begin{array}{c} \text{Let } R \text{ be a ring with } a, b \in R. \\ (\text{Prop 16.8}) \quad (1) \quad a \ 0 = 0 \text{ and } \quad 0 \ a = 0 \quad (0 \text{ is the zero elt of the ring}) \\ (1) \quad (1) \quad$$

Proof (1)
$$a = a(0+0)$$
 since 0 is the identity elt of (R, t)
= $a + a 0$ by the distributivity property
So $a 0$ is the identity elt of (R, t) ,
and thus $a 0 = 0$.
Exercise: Show $D a = 0$

$$(3)$$
 txercise : show $(-a)(-b) = ab$.

Subring check Let R be a rig and S
$$\in$$
 R. Then
(Freq 16.10) S is a subring of R iff all conditions hold:
Showing
(S,+) is
a subgroup
of (R,+)
 $= f(R,+)$
 $= x \in S$ for all x, y \in S (S is closed under ring addition)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring multiplication)
 $= x \notin S$ for all x if S (S is closed under ring for S .
Note: $= x \notin S$ (R)
 $= x \iint S$ (S is closed under mutrix multiplication:
 $= S \iint S$ (S is closed under mutrix multiplication:
 $= S \iint S$ (S is closed under mutrix multiplication:
 $= S \iint S$ (S is closed under mutrix multiplication:
 $= S \iint S$ (S is closed under mutrix multiplication:
 $= S \iint S$ (S is closed under mutrix multiplication:
 $= S \iint S$ (S is closed the trivial subring of any ring R.
 $= S \iint S \mod S$ (S is closed the trivial subring of R
 $= x \iint S is called the trivial subring of R$
 $= x \iint S is called the trivial subring of R$
 $= x \iint S is the unity of $Z i$;
 $= x \iint S is the unity of [S i]$; $(D i = 2 and (H)(4) = 4 and (D i) = 0$.
 $= S \iint S is the unity of [S i]$; $(D i = 2 and (H)(4) = 4 and (D i) = 0$.
 $= S \iint S is the unity of [S i]$; $(D i = 2 and (H)(4) = 4 and (D i) = 0$.
 $= S \iint S is the unity of [S i]$; $(D i = 2 and (H)(4) = 4 and (D i) = 0$.
 $= S \iint S is the unity of [S i]$; $(D i = 2 and (H)(4) = 4 and (D i) = 0$.
 $= S \iint S is the unity of [S i]$; $(D i = 2 and (H)(4) = 4 and ($$

Sec (6.2 Integral domains and fields
Ex: The set of Goussian integers

$$\mathbb{Z}[i] = \{a+bi: a, b \in \mathbb{Z}\}$$

is a subring of C (Verify the subring conditions)
· Check $\mathbb{Z}[i]$ is an integral domain
· The only units in $\mathbb{Z}[i]$ are $1, -1, i, -i$. $\underline{tx}(i)(-i) = -i^2 = -(-i) = i$
[Why?
Suppose $x = a+bi \in \mathbb{Z}[i]$ is a unit with inverse $y = (-i) = i$
 $1 = x \underline{y} = (a+bi)(c+di) = ac + adi + bci - bd$
so $ad-bd = 1$ and $ad+bc = 0$
Then its $conjugate \ \overline{x} = a-bi \ is \ also \ a \ unit \ unit \ unit \ units \ inverse \ \overline{y} = c - di$
 $because \ \overline{x}\overline{y} = (a-bi)(c-di) = ac - adi - bci - bd = 1 - 0i = 1$
Thus $1 = 1 \cdot 1 = (x \underline{y})(\overline{x}\overline{y}) = x\overline{x} \ \underline{y}\overline{y} = (a^2+b^2)(c^2+d^2)$
Since $a, b, c, d \in \mathbb{Z}$, we know a^2+b^2 must be either $1 \text{ or } -1$.
So $a+b\overline{i}$ is either $1, -1, i, \text{ or } -\overline{i}$.
The other nonzero eits of $\mathbb{Z}[\overline{i}]$ are not $units$,
 c_{j} . $(+2\overline{i})$ is not a $unit$.

Ex The set of matrices

the unity

$$F = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} \subset Mat_{2}(\mathbb{Z}_{2})$$
with entries in \mathbb{Z}_{2} forms a field
under usual matrix addition and multiplication.
For example: $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
So both x and y are units in F

$$\frac{\Pr_{rop}\left(\text{Cancellation law for integral domain}\right)}{\left(\Pr_{rop} 16.15\right)}$$
Let D be an integral domain, with $a,b,c \in D$.
If a is nonzero and $ab = ac$,
then $b = c$

Front From ab = ac, we have 0 = ab - ac = a(b-c) by the distributivity property Since D has no zero divisors (by defort integral domain), a=0 or b-c=0. Since $a \neq 0$ by assumption, b-c=0b=c,

Thm Every finite integral domain is a field (Thm 16.16) Proof Let D be a finite integral domain (D is a commutative ring with unity 1, and D has no zero divisors) Let a be a nonzero eit in D (We need to show that a is a unit, meaning ab=1 for an elt $b \in D$) If a=1, then a is its own (multiplicative) inverse. Suppose $a \neq 1$. Consider the sequence of elts in D $a_1 a^2, a^3_1, \dots$ Since D is finite, there must be two positive integers i, i with i < j such that $a^i = a^j$. $a^{i} = a^{i} a^{j-i}$ By the above prop (Cancellation for integral domain), $1 = a^{j-i}$ Since $a \neq 1$, we know j - i > 1. This means $1 = a a^{\tilde{j}-i-1}$ so aj-i-1 is the inverse of a D Alternative proof (the same idea). See proof of Thm 16.16 in Sec 16.2 textbook

Notation For any nonnegative integer n and elt
$$x \in R$$
,
write $X + X + \dots + X$ as $n \times \text{ or } n \cdot X$
n times
Warning This could potentially be confusing because we write
 Sr
to denote the product Sr for $S, r \in R$
Def The order of an elt X in a ring R
is the order of X under the addition operation of R ,
i.e. the order of X as group eit $(R, +)$,
i.e. the smallest positive integer n such that
 $n \cdot X = O$
If no such integer exists, say X has infinite order
 Mrf The characteristic of a ring R ,
 $Char R$,

is the least positive integer n such that $n \cdot x = 0$ for all $x \in \mathbb{R}$. If no such integer exists, then we define char $\mathbb{R} = 0$.

Ex the rings
$$Q$$
, R , C , Z , Z [i]
all have characteristic D because
there is no positive integer n such that $n \cdot 1 = 0$

$$\underline{Ex}$$
 The ring $Mat_2(\mathbb{R})$ also has char 0.
The order of unity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is infinite.

$$\underline{Ex}$$
 For every prime P, \mathbb{Z}_p is a field of Char P.
($E_X | 6.17$)

$$\frac{Proof + that Zp is a field}{Sec 3} = 9 cd (x, n) = 1 iff$$

$$x has a multiplicative inverse in mod n$$
So every elt of Zp (except 0) is a unit.

Froof -that
$$\mathbb{Z}p$$
 has characteristic \mathfrak{P} :
The order of the unity elt 1 is p

Lemma Let R be a ring with unity 1.
(Lemma
(Lemma
(b.18)) If 1 has order n, then char R = n
Proof Suppose 1 has order n,
then n is the smallest positive integer
such that
$$n \cdot 1 = 0$$
.
Then, for all $r \in R$,
 $n \cdot r = n \cdot (1r)$ by def of unity
 $= \underbrace{1r + 1r + \dots + 1r}_{n \text{ times}}$ (what the notation means)
 $= \underbrace{(1 + \dots + 1)}_{n \text{ times}} r$ by the distributive property
 $= 0 r$ since $n \cdot 1 = 0$
 $= 0$ by def of the zero elt

Lemma ¥
$$(m.x)(n\cdot y) = (mn) \cdot (xy)$$
 for $m, n \in \mathbb{Z}$, $x, y \in \mathbb{R}$
Proof (Partial proof, for positive m and n)
 $(m \cdot x)(n, y) = (x + x \dots + x) (y + y + \dots + y)$
ring
multiplication $= xy + xy + \dots + xy$ (by foiling)
mn times
 $= (mn) \cdot (xy)$ (Extra
notes)

The characteristic of an integral domain is
(Thm 16.19) either prime or zero.
Proof Let D be an integral domain.
Suppose char D=C with
$$n \neq 0$$
.
For the sake of contradiction, suppose C is not prime.
So C=mn where $1 < m < C$, $1 < n < C$.
By above Lemma, $0 = C \cdot 1$
 $= (mn) \cdot (11)$
 $= (m.1)(n \cdot 1)$ by Lemma ¥
Since D has no zero divisors,
either M.1=D or M.1=0.
By Lemma above, Char D repuls order of 1.
So char D is less than C, which is a Contradiction.
Therefore, C must be Yrime. \Box