Last updated: Oct 30, 2024

Abstract Algebra Notes Week 9 Wed, Oct 30 2024

Proposition 3.21 Let G be a group and a and b be any two elements in G . Then the equations $ax = b$ and $xa = b$ have unique solutions in G.

This is why the Cagley table is like sudoka

To prove that a subset
$$
K \subseteq G
$$
 is a subgroups prove:
\n(1) The identity of G is in K
\n(2) For all abek, abek
\n(K is closed under the group operation)
\n(3) For all $a \in K$, $a' \in K$
\n(K is closed under taking inverses)

Recall Lemma for Cosets: (Lemma 6.3) $\alpha \in \mathsf{bH}$ iff all $\mathsf{aH} = \mathsf{bH}$ iff a $\mathsf{b} \in \mathsf{H}$

TFAE:

\n(i)
$$
gN = Ng
$$
 for all $g \in G$ (def of $N \leq G$)

\n(all left cosets are right cosets)

\n(2) $gng^{-1} \in N$ for all $g \in G$ and $n \in N$

\n(closed under conjugation)

\n(s) $gNg^{-1} = N$

\n(only one conjugate subgroup)

 $Prep 1$ Let $f: G \rightarrow H$ be a group homomorphism.</u> $(\gamma_{\text{top}}$ 11.4) Part If $J \trianglelefteq H$. $(T$ is a normal subgroup of H) then the preimage / inverse image / pullback of H' $f^{(1)}(f) = \begin{cases} 1 & \text{if } f \neq f \end{cases}$ is ^a normal subgroup of G Proof First, check the three conditions for being a subgroup Exercise To prove that $f''(T)$ is normal in G, we will show that $g \times g^- \in + \mathsf{CT}$) for all $x \in + \mathsf{CP}$ and $g \in \mathsf{G}$ Let $g \in G$ and $x = f'(T)$. Then $f(x) \in J$ by def of preimage. S_{o} $f(g\times g^{-1}) = f(g) f(x) f(g^{-1})$ since f is a homomorphism = $f(g) f(x) [f(g)]^{-1}$ \angle \in \top since $f(g)$, $ff(g)^{-1} \in H$ and $f(x) \in J$ and J is normal in H . By def of preimage, $f(g \times g^{-1}) \in J$ means $gxg^{-1} \in \{f'(J)\}.$ S_{0} $\tilde{f}'(T) \leq G_{\Box}$ $Cor 2$ The kernel of a group homomorphism $f: G \rightarrow H$ $(Thm \parallel .5)$ is a normal subgroup of G. $Proff$ $\{e_{H}\}$ is a normal subgroup of H, so by above Ker $f \stackrel{\text{def}}{=} f^{-1}(f e_H)$ is a normal subgroup of G. Alternate proof See week 8 Practice Problem 4 Solutions

Ex Consider the "wapping function"
$$
f(z)
$$

\n
$$
f(z, \pi, z) = f(z, \pi, z) + f(z, \pi, z)
$$
\n
$$
f(z) = \cos \theta + i \sin \theta \text{ or } e^{i\theta}
$$
\nThis is a homomorphism because

\n
$$
f(x + y) = e^{i(k+1)} = e^{ix} e^{i\theta} = f(x) f(y)
$$
\nSince

\n
$$
f(z) = 1
$$
 iff $\cos \theta = 1$ iff θ is an integer multiple of 2π ,\n
$$
\sec \theta = \frac{1}{2} \pi \pi
$$
 if 2π and 2π is a cyclic subgroup of $(\mathbb{R}, +)$ generated by 2π :\n
$$
\therefore \Rightarrow -4\pi \xrightarrow{+2\pi} -2\pi \xrightarrow{+2\pi} 0 \xrightarrow{+2\pi} 2\pi \xrightarrow{+2\pi} 4\pi \xrightarrow{+2\pi} 0
$$
\n
$$
= \pi
$$
\nWe can find that the following equations:

\n
$$
\sin \theta = \frac{1}{2} \cos \theta =
$$

Lemma 3 Let
$$
f: G \rightarrow H
$$
 be a group homomorphism, and $a, b \in G$.
\n $f(a) = f(b)$ iff $a \nle f = b \nle f$
\nthe $c \nle f$ then f then $c \nle f$ is $c \nle f$
\n $f(a) = f(b)$ if $a \nle f$ is $c \nle f$
\n f the f
\n<

Lemma 4 Let
$$
f: G \rightarrow H
$$
 be a group homomorphism, and $a \in G$.
\nIf $f(a)=y$, then $f'(qy)^{\frac{def}{2}}[xeG: f(x)=y]$ is equal to
\na ker f,
\nthe coset of ker f containing a.
\nProof (First, prove $f'(g)$) C aker f)
\nLet $b \in f'(g)$. Then $f(b)=y=f(a)$.
\nBy Lemma 3, $bker f = aker f$.
\nThus, $b \in aker f$.
\n(Second, prove $f'(fg)$) D a ker f)
\nLet $k \in ker f$. Then $f(ak) = f(a) f(k) = y e_{\mu} = y$.
\nSo, by def, ak $\in f'(fg)$. π

Def	A function $f: G \rightarrow H$ is called a $t-t_0-1$ function
if the cardinality of $f'(x_0)$ is t for all $y \in f(G)$	
Note: A one-to-one function is injective	
Proof	Let $f: G \rightarrow H$ be a group homomorphism, where $ ker f = t$.
Then f is a t -to-1 mapping.	
Let $ye f(G) = \{fw: xeG\}$, meaning $y = f(a)$ for some $a \in G$.	
Then $f'(y_0)$ = a ker f	
the coset of ker f in G containing a	
Since $f'(f(y))$ is a coset of ker f, $f'(f(y))$	
has the same cardinality as ker f. \Box	

Ex	Let $f: C^* \rightarrow C^*$
$f(x) = x^4$	
For $f = \{x: x^4 = 1\}$ = $\{1, 1, -1, -1\}$.	
By above $f{r_{P_3}}$ we know f is a 4-to-1 mapping.	
For example, let's find the pullback / fiber of 2,	
$f'(t_2)$, all elements that are cent to 2.	
We know $f(\sqrt[4]{2}) = 2$. So by above lemma,	
$f'(t_2) = \sqrt{2}$ ker $f \cdot \sqrt[3]{2}$, $-\sqrt[4]{2}$, $-\sqrt[14]{2}$, $-\sqrt[14]{2}$), and	
Here, set f be the case of the form in $\sqrt[4]{2}$.	
Example 1. If $f(x_1, x_1, y_1)$ and $f(x_2, y_1, y_1)$ and $-\frac{1}{2}$ for $-\frac{1}{2}$.	
General $(arthen f: G \rightarrow H)$	
General $(arthen f: G \rightarrow H)$	
f be the sum of f and f is the sum of $\sqrt[4]{2}$.	

Def Given a normal subgroup N 4G,
\nthe natural or canonical map

\nIt:
$$
G \rightarrow G/N
$$

\nis defined by

\n
$$
\pi(q) = qN
$$
\nFor f and f are also $f(q)$ and $f(q)$ are also $f(q)$.

\nFor f and f are also $f(q)$ and $f(q)$ are $f(q)$ and $f(q)$ are $f(q)$ and $f(q)$ are $f(q)$ and $f(q)$ are $f(q)$.

\nThe second set multiplication is well-defined

\nThe second set multiplication is well-defined

\nThe second set multiplication is well-defined

\nThe second set multiplication is $f(q)$.

\nThe second set of $f(q)$ are $f(q)$ and $f(q)$ are $f(q)$.

\nThe second set of $f(q)$ are $f(q)$ and $f(q)$ are $f(q)$.

\nThe second set of $f(q)$ are $f(q)$ and $f(q)$ are $f(q)$.

\nThe second set of $f(q)$ are

$$
\begin{matrix} 1st & \text{Isomorphism} & \text{Thm} \\ 1.10 & \text{Inm} \end{matrix}
$$

 \cdot ist \int iso \int \int \ln π : Let $f: G \rightarrow H$ is a group homomorphism with $K = \ker f$ Note that we've proven that ker + \triangleleft G, so $\frac{G/K = 1 \times K \times G}{1 \times G}$ is a group.
Let $i: G/K \longrightarrow H$ be defined by. Let $i: G/K \longrightarrow H$ be defined by g K \mapsto $f(g)$ for all g K \in G/K Then i is an injection $G/k \longrightarrow H$. In particular, we have an isomorphism given by i $G/k \stackrel{\sim}{\Longrightarrow} Im f$

1. Prove that i is well-defined (that def of i depends only on the coset):

We need to show that if $aK = bK$ then $\bar{c}(ak) = \bar{c}(bk)$. Suppose $aK = bK$. By Lemma 3, $\frac{1}{16}$ = $\frac{1}{16}$
(\Leftarrow) so $i(ak) = i(bk)$ 1

2. Prove that τ is injective:
We need to show that $\tau(aK) = \tau(bK)$ implies $aK = bK$.

 $Suppose \tilde{\iota}(bK) = \tilde{\iota}(aK)$. Then $f(b) = f(a)$ by def of \bar{b} Then $aK = bK$ (by Lemma 3)

3. Prove that i is a homomorphism: We need to show that \bar{i} $(ak \cdot bk) = \bar{i}$ (ak) \bar{i} (bk) .
Recall from the def of quotient groups that ak bk= abk. $\tilde{\iota}$ (ak.bk) = $\tilde{\iota}$ (ab K) by def of the binary operation of G/k . $= f(ab)$ by def of i $f(a) f(b)$ since f is a homomorphism $= i(ak) i(k)$ by def of \overline{c} .

4. Frove that $\iota : \sigma/\kappa \longrightarrow + (G)$ is surjective We need to show that for each $h \in Im(f)$, there is $gK \in G/K$ with $\tilde{\iota}(gK)^{\varepsilon}$ h Let ye Im (f). By def, $Im(f) = \{ f(q) | g \in G \}$, so there is $x \in G$ with $f(x)=y$ Then $i(xk) = f(x) = y \cdot q$ Note Con't of 1st Isomorphism Thm Let $f: G \longrightarrow H$ be a group homomorphism, and set $k = ker f$. Then the isomorphism $G_{\text{ker }f} \cong f(G)$ $f = \tilde{t}' \cdot \frac{\pi}{4he}$ natural onto homomorphism $G \rightarrow G/ker f$ because $G \longrightarrow f(G)$ and $\overline{}$ $G \xrightarrow{\pi} G_{\mathcal{K}} \xrightarrow{\tilde{L}} f(G)$ $x \mapsto x k \mapsto f(x)$ $G \xrightarrow{\pi} G/k$ The diagram $\begin{array}{ccccc} & & & \vdots & \rightarrow & \text{Glled a "Commentative diagram' } \ & & \downarrow & & \downarrow \ & & \searrow & & \downarrow \ & & & \searrow & & \end{array}$ f ^G illustrates the 1st isomorphism Thm We say "the diagram commutes" to mean $f = i \circ \pi$. Note This tells us that every group homomorphism can be written as a composition $(1 - 1$ homomorphism) o Conto homomorphism).

Applinations of the 1st Isomorphism Thm

Example 1 Prove that $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_{n}$. $\frac{\mathbb{P}_{\mathit{oof}}}{\mathsf{R}\mathit{ecall}}$ $\mathsf{R}\mathit{ecall}$ that $\mathbb{Z}_{n} := \{ o, l, 2, 3, ..., n-1 \}$ $n \mathbb{Z}$ integer multiples of n nz zez n,o, n, 2n, 3m Define $f: \mathbb{Z} \longrightarrow \mathbb{Z}_n$ by $z \mapsto z \pmod{n}$ Let $K := \{ \text{for } f = \}$ integer multiples of $n \} = n \mathbb{Z}$. The elements of $\frac{\alpha}{\alpha}$ $\frac{\alpha}{\alpha}$ are the cosets $Dtn\mathbb{Z}$, $1+n\mathbb{Z}$, $2+n\mathbb{Z}$, ..., $5^{n+1}+n\mathbb{Z}$ K ₎ I + K ₎ 2 + K , --- s ^{n+l +} K By the 1st Isomorphism Thm, $\mathbb{Z}/n_{\mathbb{Z}} \cong \mathbb{I}m(F)$. But $Im(f) = Z_n$, so $Z/nZ \cong Z_n$.

Example 2 (back to the wrapping function)

Consider
$$
f^{(R,+)} \rightarrow \mathbb{C}^{*}
$$
.)

\nfor side r and $f^{(R,+)} \rightarrow \mathbb{C}^{*}$.

\nwith $\ker f = \langle 2\pi \rangle$.

\nBy the 1st

\nFor $f^{(R,+)} \rightarrow \mathbb{C}^{*}$.

\nBy the 1st

\nFor $f^{(R,-)} \rightarrow \mathbb{C}^{*}$.

\nThus, $f^{(R,-)} \rightarrow \mathbb{C}^{*}$.

Example 3 (Exfra notes)
\nLet G be a cyclic group U) generators q.
\nDefine a map
$$
f: Z \rightarrow G
$$
 by
\n $n \mapsto g^{n}$
\nThen f is a homomorphism since
\n $f(m+n)=g^{m+n} = g^{n}g^{n} = f(m) f(m)$.
\n f is surjective because by def $G = \langle g \rangle = \{g^{n}: n \in Z\}$
\nIf $|g| = m$, then $g^{m} = e$ and ker $f = mZ$
\nand $Z_{kerr} = Z_{mZ} \cong f(Z) = G$
\nby the 1st iso. How
\nIf the order of g is infinite,
\nthen ker $f = \{0\}$ and
\n $Z_{kerr} = Z \cong f(Z) = G$
\n $g^{min} by the 1st iso + km$. D

Recall:
$$
Z_{G} \cong Z_{3} \times Z_{2}
$$
 but $Z_{8} \neq Z_{2} \times Z_{4}$

\nRecall: $Z_{G} \cong Z_{3} \times Z_{2}$ but $Z_{8} \neq Z_{2} \times Z_{4}$

\nor $Z_{2} \times Z_{2} \times Z_{2}$

\nbecause Z_{8} has an alt of order 8, the number 1, so $Z_{2} \times Z_{4}$

\nSo $Z_{2} \times Z_{4}$

\nor $Z_{2} \times Z_{2} \times Z_{2}$

\nbecause Z_{8} has an elt of order 8, the number 1, but every elt × in $Z_{2} \times Z_{4}$

\nSo $Z_{3} \times Z_{4}$ is a set of order 8, the number 1, so $Z_{2} \times Z_{4}$

\nSo $Z_{3} \times Z_{4}$ is a set of order 8, the number 1, so $Z_{4} \times Z_{4}$

\nSo $Z_{5} \times Z_{4}$ is a set of order 8, the number 1, so $Z_{4} \times Z_{4}$

\nSo $Z_{5} \times Z_{4}$ is a set of order 8, the number 1, so $Z_{4} \times Z_{4}$

 $\frac{Pr_{op1}}{Pr}$ (a) If gcd (n, m) = 1 then $\sum_{nm} \approx \sum_{n} x \sum_{m}$
 $\frac{Pr_{op1}}{Pr}$ Suppose gcd (n, m) = 1. Suppose gcd (n, m) = 1. $Clain: (1,1) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ has order nm. Let k be the order of $(1,1) \in \mathbb{Z}_n \times \mathbb{Z}_m$ then $\frac{(1,1) + (1,1) + ... + (1,1)}{k} = (k,k) = c$ This means ⁿ divides ^k and ^m divides k S_{o} $k = \text{Lcm}$ (n, m But since $gcd(n,m) = 1$, $lcm(n,m) = nm$ Since we know (from def of direct products) that the order of $Z_n \times Z_m$ is nm $\langle (l,j) \rangle$ must generate $Z_n \times Z_m$. So ZnxZm is ^a cyclic group of order nm thus it is isomorphic to \mathbb{Z}_{nm} .

Prop 1(b) If
$$
Z_{nm} \cong Z_{n} \times Z_{m}
$$
 then $gcd(n,m) = 1$

\n1. Suppose $Z_{nm} \cong Z_{n} \times Z_{m}$.

\n1. $Z_{n} \times Z_{m}$ has an elt (a, b) of order nm (Since $1 \in Z_{nm}$ has order nm).

\n1. For convenience, $switch +_{o}$ "multiplicative notation".

\n1. Let C_{n} denote a cyclic group of order m , and let C_{m} denote a cyclic group of order m .

\n1. Let e_{1} and e_{2} denote the identities of C_{n} and C_{m} , respectively.

\n1. $C_{n} = \langle a \rangle$ and $C_{m} = \langle b \rangle$

Then
$$
a^n = e_1
$$
 and πa_2 \leq \leq

Then the order of (a, b) must be the smallest m ultiple of n and of m , l cm (n, m) . Since (a, b) has order nm $(from(k))$, $lcm(n,m)$ = nm. So the greatest common $divisor$ of n and m is 1.

Classification. Then of Figure Abelian Groups

\nEvery finite abelian group A is isomorphic to a direct product of Yclic groups. Let

\n
$$
A \cong \mathbb{Z}_n \times \mathbb{Z}_q \times \dots \times \mathbb{Z}_n
$$
\nwhere each n_i is a prime point, n_i is a prime point, $n_i \in P_i$ and n

Classification of finitely generated abelian group Every finitely generated abelian group ^A is isomorphic to a direct product of cyclic groups, i.e $A = \underbrace{X \times Z \times ... \times Z}_{n} \times Z_{n_{1}} \times Z_{n_{2}} \times ... \times Z_{n_{j}}$

Nonabelian groups are much more mysterious