Last updated: Oct 30, 2024

Abstract Algebra Notes Week 9 Wed, Oct 30 2024

Proposition 3.21 Let G be a group and a and b be any two elements in G. Then the equations ax = b and xa = b have unique solutions in G.

I This is why the Cayley table is like sudoky

Recall Lemma for cosets: a E bH iff aH=bH iff a'b E H

<u>Prop</u> 1 Let $f: G \rightarrow H$ be a group homomorphism. (Prop 11.4) part 4 IF J J H, (Jis a normal subgroup of H) then the preimage /inverse image / pullback of H' $f'(\tau) \stackrel{\text{def}}{=} f g \in G : f(g) \in J$ is a normal subgroup of G. First, check the three conditions for being a subgroup Proof (Exercise) To prove that f'(T) is normal in G, we will show that $g \times g^{-1} \in f'(T)$ for all $\times \in f'(T)$ and $g \in G$: Let $g \in G$ and x = f'(T). Then $f(x) \in T$ by def of preimage. So $f(q \times q^{-1}) = f(q) f(x) f(q^{-1})$ since $f(q \times q^{-1}) = f(q) f(x) f(q^{-1})$ $= f(g) f(x) [f(g)]^{-1}$ E T since $f(g), f(g)]^{-1} \in H$ and $f(x) \in J$ and J is normal in H. By def of preimage, $f(q \times \overline{q'}) \in J$ means $q \times \overline{q'} \in \overline{f'}(J)$. S. $f'(T) \leq G_{\Box}$ Gr 2 The kernel of a group homomorphism $f: G \rightarrow H$ (Thm 11.5) is a normal subgroup of G. Proof [eH] is a normal subgroup of H, so by above ker f = f - ({eH}) is a normal subgroup of G. Alternate proof See week & Practice Problem 4 Solutions

Ex Consider the "urapping function"
(Ex II.7)
$$f:(\mathbb{R}, +) \rightarrow (\mathbb{C}^{*}, \cdot)$$

 $f(\theta) = \cos \theta + i \sin \theta \text{ or } e^{i\theta}$
This is a homomorphism because
 $f(x+y) = e^{i(x+y)} = e^{ix} e^{iy} = f(x)f(y)$
Since $f(\theta) = 1$ iff $\cos \theta = 1$ iff θ is an integer multiple of 2π ,
ker $f = \{2\pi n: n \in \mathbb{Z}\}$
Note Observe that this is a cyclic subgroup of $(\mathbb{R}, +)$
generated by 2π :
 $\cdots \rightarrow -4\pi \xrightarrow{+2\pi} -2\pi \xrightarrow{+2\pi} 0 \xrightarrow{+2\pi} 2\pi \xrightarrow{+2\pi} \cdots$
 $\lim f=\{e^{i\theta}: \theta \in \mathbb{R}\} = \{Complex numbers \lor magnitude 1\}$
 $= \pi$, "the circle group"

Lemma 3 Let
$$f: G \rightarrow H$$
 be a group homomorphism, and $a, b \in G$.
 $f^{(a)} = f(b)$ iff $a \ker f = b \ker f$
the coset of $\ker f$
 $entaining a$
 $Froof$ (Forward direction (\Rightarrow)) Suppose $f(b) = f(a)$.
By Prop 3.21, there exists a unique $c \in G$ such that $b = ac$.
Then $f(b) = f(ac) = f(a) f(c) = f(b) f(c)$.
So $f(c) = e_H$ and $c \in \ker f$. Thus, $b = ac \in a \ker f$.
So $b \ker f = a \ker f$.
(Backward direction (\Leftarrow))
Suppose $a \ker f = b \ker f$. Then $b \in a \ker f$.
Then $b = ak$ where $k \in \ker f$ (that is, $f(k) = e_H$).
So $f(b) = f(ak) = f(a) f(ck) = f(a)e_H = f(a)_{II}$

Lemma 4 Let
$$f: G \rightarrow H$$
 be a group homomorphism, and $a \in G$.
If $f(a)=y$, then $f'(\{y\})^{def}[x \in G: f(x)=y]$ is equal to
 $a \ker f$,
the coset of $\ker f$ containing a .
Proof (First, prove $f'(\{y\}) \subset a \ker f$)
Let $b \in f'(\{y\})$. Then $f(b)=y=f(a)$.
By Lemma 3, $b \ker f = a \ker f$.
Thus, $b \in a \ker f$.
(Second, prove $f'(\{y\}) \supset a \ker f$)
Let $k \in \ker f$. Then $f(ak) = f(a) f(k) = y e_{H} = y$.
So, by def, $ak \in f'(\{y\})$.

Ex Let
$$f: \mathbb{C}^* \to \mathbb{C}^*$$

 $f(x) = x^4$
Ker $f = [x: x^4 = 1] = [1, i, -i, -i]$.
By above Frop, we know f is a 4-to-1 mapping.
For example, let's find the pullback / fiber of 2,
 $f'(\{2\})$, all elements that are cent to 2.
We know $f(\sqrt[4]{2}) = 2$. So by above lemma,
 $f'(\{2\}) = \sqrt[4]{2}$ ker $f = [\sqrt[4]{2}, \sqrt{2}, -\sqrt{2}, -i\sqrt{2}]$, and
this set is the caset of ker f containing $\sqrt[4]{2}$.
Carteon
 $f'(\frac{1}{2}, \sqrt{2}, -\sqrt{2}, -i\sqrt{2}]$ $f(\sqrt[4]{2}) = 2$
Cerecial carton $f: G \to H$
 $f(\sqrt[4]{2}) = \sqrt[4]{2}$ $f(\sqrt[4]{2}) = 2$

Def Given a normal subgroup N 4G,
the natural or canonical map

$$\pi: G \to G_N$$

is defined by
 $\pi(g) = gN$
Facts. The natural mapping π is a homomorphism:
 $\pi(g_1 g_2) = g_1 g_2 N = (g_1 N)(g_2 N) = \pi(g_1) \pi(g_2)$
because N is normal,
coset multiplication is well-defined
. The kernel of π is N
(Note This means every normal subgroup of G
is the kernel of a homomorphism from G)
. π is surjective:
Each elt in the codomain G/N is of the form
 $gN = \pi(g)$

Ist Iso Thm:
Let f:G→H is a group homomorphism with K = ker f
Note that we've proven that ker f I G, so G/K = {xK | x ∈ G} is a group (called quotient group).
Let i: G/K → H be defined by g K → f(g) for all g K ∈ G/K.
Then i is an injection G/K → H.
In particular, we have an isomorphism given by i
G/K = Im f

1. Prove that i is well-defined (that def of i depends only on the coset):

We need to show that if aK = bK then $\overline{\iota}(aK) = \overline{\iota}(bK)$. Suppose aK = bK. By Lemma 3, f(a) = f(b), (\Subset) so $\overline{\iota}(aK) = \overline{\iota}(bK)$.

2. Prove that τ is injective: We need to show that $\tau(ak) = \tau(bk)$ implies ak = bk.

Suppose i(bK) = i(aK). Then f(b) = f(a) by def of iThen aK = bK (by Lemma 3) (\Rightarrow)

3. Prove that i is a homomorphism: We need to show that $i(ak \cdot bk) = i(ak) i(bk)$. Recall from the def of quotient groups that $ak \cdot bk = abk$. $i(ak \cdot bk) = i(abk)$ by def of the binary operation of G/k. = f(ab) by def of i = f(a) f(b) since f is a homomorphism = i(ak) i(bk) by def of i. \square 4. Prove that $i: G/K \longrightarrow f(G)$ is surjective: we need to show that for each $h \in Im(f)$, there is $gK \in G/K$ with i(gK) = h. Let y $\in Im(f)$. By def, $Im(f) = \{f(g) \mid g \in G\}$, so there is $x \in G$ with f(x) = yThen i(xk) = f(x) = y. A Note (Cont of 1st Isomorphism Thm) Let $f: G \rightarrow H$ be a group homomorphism, and set k = ker f. Then the isomorphism $G'_{ker} f \cong f(G)$ $f = \tilde{\iota} \circ \Pi$ the natural onto homomorphism $G \rightarrow G/\ker f$ because $G \xrightarrow{f} f(G)$ and $x \xrightarrow{f} f(x)$ $G \xrightarrow{\pi} G_{/_{k}} \xrightarrow{\overline{\iota}} f(G)$ $\times \longmapsto \times k \longmapsto f(x)$ $G \xrightarrow{\pi} G/k$ The diagram i_1 , called a "commutative diagram" f, Jf(G)illustrates the 1st isomorphism Thm. We say "the diagram commutes" to mean $f = i \circ \pi$. Note This tells us that every group homomorphism can be written as a composition (1-1 homomorphism) o (onto homomorphism).

Applications of the 1st Isomorphism Thm

Example 2 (back to the wrapping function)

Consider
$$f:(\mathbb{R},+) \rightarrow (\mathbb{C}^*,\cdot)$$

 $f(\theta) = \cos \theta + i \sin \theta \text{ or } e^{i\theta}$
with ker $f = \langle 2\pi \rangle$.
By the 1st iso thm, $\mathbb{R} \langle 2\pi \rangle \cong \mathbb{T}$
the circle
group

Example 3 (Extra notes)
Let G be a cyclic group w/ generator g.
Define a map
$$f: \mathbb{Z} \to G$$
 by
 $n \mapsto g^n$
Then f is a homomorphism since
 $f(m+n) = g^{m+n} = g^n g^n = f(m) f(n).$
f is surjective because by def $G = \{g\} = \{g^n: n \in \mathbb{Z}\}$
If $|g| = m$, then $g^m = e$ and ker $f = m\mathbb{Z}$
and \mathbb{Z} /ker $f = \mathbb{Z}_m \mathbb{Z} \cong f(\mathbb{Z}) = G$ -
by the 1st iso thm
If the order of g is infinite,
then ker $f = \{o\}$ and
 \mathbb{Z} /ker $f = \mathbb{Z} \cong f(\mathbb{Z}) = G$ -
 g^{ain} by the 1st iso thm.

Finite & finitely generated abelian groups (Sec 13.1)
Recall:
$$Z_6 \cong Z_3 \times Z_2$$
 but $Z_8 \not\equiv Z_2 \times Z_4$
 $e^{i} + 2^2 = 2^4$
 $+3 \stackrel{!}{=} \stackrel{!}{=} \frac{1}{2}$
 $i = 1$
 $i = 1$

Prop 1(b) If
$$Z_{nm} \cong Z_n \times Z_m$$
 then $gcd(n,m)=1$
Pf Suppose $Z_{nm} \cong Z_n \times Z_m$.
Then $Z_n \times Z_m$ has an elt (a,b) of order $nm \int (f)$
(Since $1 \in Z_{nm}$ has order nm).
For convenience, switch to "multiplicative notation".
Let Cn denote a cyclic group of order n , and
let Cm denote a cyclic group of order vn .
Let e_1 and e_2 denote the identities of Cn and Cm, resp.
Let $a \in Cn$ and $b \in Cm$ such that
 $C_n = \langle a \rangle$ and $C_m = \langle b \rangle$

Then
$$a^n = e_1$$
 and if $o \le j \le n$ then $a^{j} \ne e_1$
 $b^m = e_2$ and if $o \le j \le m$ then $b^{j} \ne e_2$

Then the order of (a,b) must be the smallest multiple of n and of m, lcm (n,m). Since (a,b) has order nom (from((*))), lcm((n,m) = nm. So the greatest common divisor of n and m is 1.

Classification The of Finite Abelian Groups
Every finite abelian group A is isomorphic to
a direct product of cyclic groups. I.e.

$$A \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \dots \times \mathbb{Z}_{n_{3}}$$

where each n_{7} is a prime power,
i.e. $n_{7} = p_{7} di$ where p_{7} is prime, $di \in \mathbb{Z}_{>0}$
 $\stackrel{\text{Ex}}{=} Mp$ to isomorphism, there are 6 abelian groups
of order $200 = 2^{3} \cdot 5^{2}$
By Prime powers $2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \xrightarrow{\text{Ex}} \mathbb{Z}_{3} \times \mathbb{Z}_{25} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \xrightarrow{\text{Ex}} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \xrightarrow{\text{Ex}} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \xrightarrow{\text{Ex}} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} = 2 \cdot 2 \cdot 5 \cdot 5$
 $\mathbb{Z}_{20} \times \mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}$

Classification of finitely generated abelian group Every finitely generated abelian group A is isomorphic to a direct product of cyclic groups, i.e $A \cong \mathbb{Z} \times \mathbb{Z} \times ... \times \mathbb{Z} \times \mathbb{Z}n_1 \times \mathbb{Z}n_2 \times ... \times \mathbb{Z}n_1$

Non abelian groups are much more mysterious