Last updated: Oct 18,2024

Abstract Algebra Notes Week 7 Wed, Oct 16 2024

External & internal direct products (Sec 9.2) Given any groups A, B, we can construct the direct product A × B. This is called the <u>external direct product</u> (because the new group A × B is "outside" of either A and B) We want to be able to reverse this process and produce an "internal" direct product, when possible. Q: Given a group G, when can we write it as $G \cong H \times K$,

is an isomorphism.

Note:

$$b + 0 = 0$$

 $3 + 4 = 1$
 $0 + 2 = 2$
 $3 + 0 = 3$
 $0 + 4 = 4$
 $3 + 2 = 5$ all of G
 $1n + 6is example,$
 $H + K^{def} = \{h + k: h \in H_3, k \in K\}$
is equal to G.

$$E_{X,2} \quad G = D_{L} = \{H, R, R^{2}, R^{3}, R^{4}, R^{5}, R^{5}, R^{2} \ R = Rot \left(\frac{2\pi}{L}\right) = Rot(6\delta)$$

$$f, fR, fR^{3}, fR^{3}, fR^{5}, fR^{5}, fR^{5}, fR^{5}, R^{5}, R$$

In this example, def HK={hk:hEH, KEK}

is equal to G

is an isomorphism.

<u>Def</u> We say $x, y \in G$ are <u>conjugate</u> in G if $g \times g^{-1} = y$ for some $g \in G$. The element $g \times g^{-1}$ is called a <u>conjugate</u> of x

<u>Prop</u>. Two conjugate elts have the same order (HWOS) . Conjugacy is an equivalence relation on G.

Def . We say two subgroups
$$H, K$$
 of G are conjugate in G
if $gHg^{-1} = K$ for some $g \in G$.
equality is required, not just isomorphism

<u>Prop</u> This relation is an equivalence relation on the set of subgroups of G.

Conjugates of a subgroup of a group

Recall: In Dn, we have
$$R^n = Id$$
 and $fR^i f = R^{-i}$
 $(fR^i = R^{-i}f)$
 $\cdot f \langle R \rangle f^{-i} = f\{Id, R, R^2, R^3\} f$
 $= \{fIdf, fRf, fR^2f, fR^3f\}$
 $= \{Id, R^3, R^2, R\}$
 $= \langle R \rangle$

•
$$R \langle f \rangle R' = R \{ Id, f \} R'$$

= $\{ R Id R', RfR' \}$
= $\{ Id, fR'R' \}$
= $\{ Id, fR^2 \}$
= $\langle fR^2 \rangle$
If f is the flip $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$,
then fR^2 is the flip $- \begin{bmatrix} -1\\ -1 \end{bmatrix}$

Normal subgroups (Sec 10.1)
Def Let G be a group and
$$H \leq G$$
 a subgroup.
We say H is normal if
 $gH = Hg$;
for all $g \in G$
(i.e. if all left and right cosets are the same)
Notation: $H \triangleleft G$ or $H \triangleleft G$
Rem If G is abelian, then any subgroup is normal.
Ex If $H \leq G$ with $[G:H] = 2$, then $H \triangleleft G$. So...
* An is normal in Sn (half of Sn are even; half are odd)
* $\langle R \rangle = [Id, R, R^2, ..., R^{n-1}]$ is normal in Dn

half the elements in Dn

 $\underbrace{\text{Ex}}_{(24)} = \frac{1}{(24)}, \quad H = \frac{1}{(24)} = \frac{1}{(24)} = \frac{1}{(24)}, \quad H = \frac{1}{(24)} = \frac{1}{(24)}, \quad H = \frac{1}{($

Ex By the same reasoning as the above example for D4,
the subgroup
$$H = \langle f \rangle = \{ Id, f \}$$
 of D_n $(n \ge 3)$
doesn't satisfy condition (3). For example,
 $R \langle f \rangle \overline{R'} = \{ Id, Rf \overline{R'} \}$
 $\neq \langle f \rangle$ because $Rf \overline{R'} = f \overline{R'} \overline{R'} = f \overline{R'}^2 = f \overline{R''}^2 \neq f$

So, by the lemma,
$$\langle f \rangle = is$$
 not normal in Dn.

Q: Why normal subgroups ?
Notation: If H is a subgroup of G, then

$$G'_H \stackrel{def}{=} \left[\begin{array}{c} gH : g \in G \end{array}\right]$$

is the set of left cosets of H in G.
A: It allows us the notion of internal direct product
A: We would like G'_H to be a group with binary operation
 $(xH)(yH) = (xy)H$.
Worning: In general, this is not well-defined.
 $E_X \quad G = P_{\varphi}, \quad H = \langle f \rangle$
We want
 $(RH)(R^3H) = R^4H = eH = H$
But $RH = Rf H$ since
 $RH = Rf (e, f] = [R, Rf]$
 $RH = Rf [e, f] = [Rf, Rf]$
 $RH = Rf [e, f] = [Rf, Rf]$
 $So \quad (RH)(R^3H) = (AfH)(R^3H)$
 $= RfR^3H$
 $= fR^2H$
But $fR^2H = fR^2[e, f] = [fR_3, R^2]$
 $So \quad fR^2H \neq H$.
In above example, the product $(xH)(yH)$ depends on
the Choice of coset representatives $(x \text{ and } y)$.

But normality fixes this issue.

Then Let G be a group and N § G.
(Then left) Coset multiplication in
$$G/N = [cosets + f N in G]$$

 $(xN)(yN) = (xy)N$
is a well-defined binary operation
(that is, the definition of coset multiplication depends
on only the cosets and not on the coset representatives.)
(2) G/N is a group under the binary operation given above,
 $Read "G \mod N"$
called the guotient group (or the factor group) of G by N
Touf () Let xN, $yN \in G/N$ be cosets.
Suppose $xN = aN$ and $yN = bN$.
(We need to show $(xN)(yN) = xyN = abN = (aN)(bN)$)
Then $a \in xN$ and $b \notin yN$.
So $a \ge xn_1$ and $b \notin yN$.
 $Box = ab = xhyn_2$
 $= xyn_2n_2$ for some $n_1 \in N$, since $n_1 y \in Ny = yN$
 $factor abox = ab = xhyn_2$
(2) Tort 1 tells us the binary operation is well-defined.
 $(Ausociativity) ((xN)(yN)) \ge (xyN)(xN) = xyzN$
 $(Identify) eN=N$ is the identity.
 $Since (xN)(x'N) = xx'N = cN = N$.

The quotient of
$$Z$$
 by $4Z$

Ex Let
$$G = \mathbb{Z}$$
, and $N := 4\mathbb{Z} = \{4K: K \in \mathbb{Z}\}$. Then $N \triangleleft G$.
The quotient group of \mathbb{Z} by $4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$,
consists of the following four cosets:
 $0 + 4\mathbb{Z} = 4\mathbb{Z}$ = $\{\dots, -4, 0, 4, 8, \dots\}$ the identity in \mathbb{W}
 $1 + 4\mathbb{Z} = \{1 + 4\mathbb{K}: K \in \mathbb{Z}\} = \{\dots, -3, 1, 5, 9, \dots\}$
 $2 + 4\mathbb{Z} = \{2 + 4\mathbb{K}: K \in \mathbb{Z}\} = \{\dots, -2, 2, 6, 10, \dots\}$
 $3 + 4\mathbb{Z} = \{3 + 4\mathbb{K}: K \in \mathbb{Z}\} = \{\dots, -1, 3, 7, 11, \dots\}$

Note that 1+4Z has order 4:

$$(1+4\mathbb{Z}) + (1+4\mathbb{Z}) = 2+4\mathbb{Z} \neq 4\mathbb{Z}$$

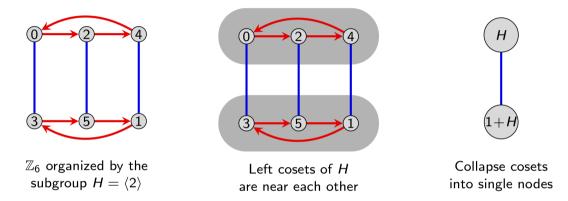
(Note: No eit can have order 3 because of lagrangers Thm)

$$(1+4\mathbb{Z}) + (1+4\mathbb{Z}) + (1+4\mathbb{Z}) + (1+4\mathbb{Z}) = 4+4\mathbb{Z} = 4\mathbb{Z}$$

So <1+42>= 2/42, and thus 2/42 is a cyclic group of order 4. Therefore 2/42 is isomorphic to 24.

Consider the group $G = \mathbb{Z}_6$ and its normal subgroup $H = \langle 2 \rangle = \{0, 2, 4\} \cong \mathbb{Z}_3$ There are two (left) cosets: $H = \{0, 2, 4\}$ and $1 + H = \{1, 3, 5\}$.

The following diagram shows how to take a quotient of \mathbb{Z}_6 by H.

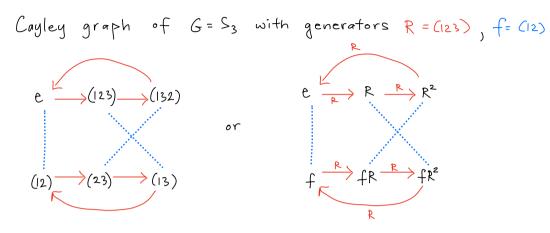


In this example, the resulting diagram *is* a Cayley diagram. So, we *can* divide \mathbb{Z}_6 by $\langle 2 \rangle$, and we see that \mathbb{Z}_6/H is isomorphic to \mathbb{Z}_2 .

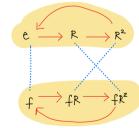
Recall Ex 1: $\mathbb{Z}_6 \cong \langle 2 \rangle \times \langle 3 \rangle$

The quotient of S3 by ((123))

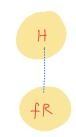
Ēx



- Consider a normal subgroup $H = \langle (123) \rangle = \langle R \rangle$ which is isomorphic to \mathbb{Z}_3 .
- There are two left cosets: $H = \{e, R, R^2\}$ and $fH = \{f, fR, fR^2\}$, so $G'_H \cong \mathbb{Z}_2$.
- · The following visualizes taking quotient of G by H:



Collapse each coset into a single vertex



· Note S_3 is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3$

Note If G, H, K satisfy all three conditions above,
then by def G is the internal direct product
of H and K, and G is naturally isomorphic
(but not equal) to the external direct
product of H and K.
(see Thm 9.27)
Ex1 gives us the isomorphism
$$\mathbb{Z}_6 \cong \langle 3 \rangle \times \langle 2 \rangle$$

Ex2 - 1 D₆ $\cong \langle f, R^2 \rangle \times \langle R^3 \rangle$

Example 9.24 The group U(8) is the internal direct product of

$$H = \{1, 3\}$$
 and $K = \{1, 5\}.$

Example 9.25 The dihedral group D_6 is an internal direct product of its two subgroups

$$H = \{ \mathrm{id}, r^3 \} \quad \mathrm{and} \quad K = \{ \mathrm{id}, r^2, r^4, s, r^2 s, r^4 s \}.$$

 $(\mathsf{E} \times 2)$ It can easily be shown that $K \cong S_3$; consequently, $D_6 \cong \mathbb{Z}_2 \times S_3$.