Document last updated: Fri, Oct 11 2024

Abstract Algebra Notes Week 6 Wed, Dct 9 2024

$$\begin{array}{c} \hline Group \ of \ complex \ numbers \end{array} (Sec \ 4.2) \\ \hline C = \left\{ \begin{array}{c} Complex \ numbers \end{array} \right\} = \left\{ a + bi : a, b \in R \right\} \ where \ i^{2} = -1 \\ real \ part \end{array} (maginary \ part) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \end{array} (Sec \ 4.2) \\ \hline Cartesian / rectangu lar \ polar \ Coordinates \ arc \ arc$$

Def C = C \ lo } is a group wy multiplication as group operation.

Identity: 1 The inverse of z = a + bi = Re^{iθ} is $z^{-1} = \frac{a - bi}{a^2 + b^2} = \frac{1}{R}e^{-i\theta}$

Some subgroups of
$$C^{K}$$
:

$$\begin{cases} \bigcirc R^{K} = R \setminus \{0\} \\ \bigcirc Q^{K} = Q \setminus$$

$$E \times \varphi: \mathbb{Z} \longrightarrow \mathbb{P}_{q} \quad defined \quad by$$

$$k \longmapsto \mathbb{R}^{k} \quad where \quad \mathbb{R} \quad is \ a \ rotation \quad by \quad \frac{2\pi}{q} \quad in \quad \mathbb{P}_{q}$$
is a homomorphism which is not injective and not surjective.
$$\frac{\operatorname{Proof}}{\mathbb{P}(k+1)} \quad \text{For all } k, l \in \mathbb{Z}, we have$$

$$\varphi(k+1) = \mathbb{R}^{k+l} = \mathbb{R}^{k} \mathbb{R}^{l} = \varphi(k) \varphi(l).$$
* It's not injective, e.g. $\varphi(2) = \mathbb{R}^{2} = \mathbb{R}^{4} \mathbb{R}^{2} = \mathbb{R}^{6} = \varphi(6) \text{ but } 2 \neq 6 \text{ in } \mathbb{Z}$

* It's also not surjective: P(Z) doesn't contain any reflection.

Note

$$\ker Q = 4\mathbb{Z} = \{\dots, -4, 0, 4, 8, \dots\}$$

$$\lim Q = \{ \text{Rotations by } 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \}$$

is an injective homomorphism which is not surjective. Visualization

(A surjective homomorphism also has a special visual and name, but we need more background before we're ready to discuss it)

Then 1 Suppose
$$G = \langle a \rangle$$
 is a cyclic group.
(Then 27 Then either a has infinite or finite order a.
(The 27 Then either a has infinite or finite order a.
(The 17)
If $|a| = \infty$ then $\varphi: \mathbb{Z} \to G$
 $k \mapsto a^k$
is an isomorphism.
 $\frac{1}{13}$
If $|a| = \infty$ then $\varphi: \mathbb{Z} \to G$
 $k \mapsto a^k$
is an isomorphism.
To show φ is injective: Let $\varphi(k) = \varphi(k)$
 $Then a^k = a^k$
 $a^k a^{-k} = c$
 $a^{k-k} = c$
 $a^{k-k} = c$
 $a^{k-k} = c$
Since a is of infinite order, $k-k$ must be 0s so $k = l$.
To show φ is surjective: Every of G is
of the firm a^k for some $k \in \mathbb{Z}$,
so $\varphi(k) = a^k$.
Similarly, if $|a| = n$ then $\varphi: \mathbb{Z}_n \to G$
 $k \mapsto a^k$
is an isomorphism. \exists

$$\frac{E_X}{V(q) = \{1, 2, 4, 5, 7, 8\}} = \langle 2 \rangle$$

Since the order of 2 in U(q) is 6,
 $U(q) \cong Z_{c}$

PropLetG, H, Kbegroups.(1)
$$id_G: G \rightarrow G$$
is an isomorphism $x \mapsto x$ $Pf:$ id_G a homomorphism: $id_G(ab):ab:id_G(a)$ $id_G(ab):ab:id_G(a)$ id_G a bijection, \checkmark (2)If $\varphi: G \rightarrow H$ is an isomorphism, thenthe inverse bijection φ^1 is also an isomorphism.IfThe inverse bijection φ^1 is a bijection. \checkmark Given $Gd \in H$, $C=Q(a)$ and $d=\varphi(b)$ for some $a, b \in G$ since φ is a bijection.Then $\varphi(ab)=Q(a)$ $\varphi(b)$ since φ is a homomorphism $= C$ d So $\varphi^1(cd) = ab = \overline{\varphi}^1(c) \overline{\varphi}(d)$, and thus φ^1 is a homomorphism? (3) $(The composition of two isomorphisms is also an isomorphism?If $\overline{\varphi}: G \rightarrow H$ and $\overline{\varphi}: H \rightarrow k$ are isomorphisms,then $\gamma(\varphi(ab)) = \gamma(Q(a)Q(b))$ since φ is a homomorphism? $For a, b \in G$, $\gamma(\varphi(ab)) = \gamma(Q(a)Q(b))$ since φ is a homomorphism.Remark The set $Aut(G) \stackrel{def}{=} [automorphisms of G] forms a groupunder composition.If scalled the automorphism group of G.$$

Then 4 Up to isomorphism, there are two groups of order 4,
Zq and Vq.
Ex Other groups isomorphic to Zq:
*
$$\left[Id, P, R^2, R^3 \right] \leq D_q$$

Ret(gr)
* $\left[Id, (12b3), (16)(23), (3621) \right] = \langle (1263) \rangle = \langle (3621) \rangle$ from Quiz03
* $U(5) = \left[1, 2, 3, 4 \right] = \langle 2 \rangle = \langle 2 \rangle$ from Quiz02
Other groups isomorphic to V4:
* the 2-light switch group from Day 1
* $Z_2 \times Z_2 \equiv \left[(00), (10), (01), (01) \right]$
* $U(8)$
* $U(12)$
* $\left[Id, R, f, fR^2 \right] \leq D_q$
Ret(gr) ong flip
* $\left[Id, (12)(34), (13)(24), (14)(23) \right] \leq S_q$
Proof af Them 4 Suppose G is a group of order 4.
(ase 1: G contains on elt g of order 4.
Then $\langle q \rangle$ is a subgroup of order 4.
Every cyclic group of order 4.
By Lagrange's Them, $|g|=2$ for all non-identity $q \in G$.
So $g'=q$ for all $g \in G$.

So this group has the same multiplication table as V_4 . Thus $G \cong V_4$.

Case $Q(1) \neq e$: Then Q(1) = x where x = a, b, or C.

Then
$$\Psi(3) = \Psi(1+1+1)$$

 $= \Psi(1) \Psi(1) \Psi(1)$
 $= \chi^{3} = \chi^{2} \chi$
 $= \chi \text{ since } |\chi| = 2$
 $= \Psi(1)$
Having $(\Psi(3) = \Psi(1) \text{ means } \Psi \text{ is not. in}$

Having Q(3) = Q(1) means Q is not injective. In both cases, Q is not a bijection. So there is no isomorphism from Z_4 to V_4 claim —end of Proof of Thm 4 —

(Exfra notes)

Prop Let
$$\varphi: G \to H$$
 be a homomorphism of groups.
(Frop ||.1, f () φ Sends c_G to c_H
Thum ||.5) (2) For each $x \in G$, $\varphi(x^{-1}) = (\varphi(x))^{-1}$
(3) If k is a subgroup of G then
the image $\varphi(k)$ is a subgroup of H.
(4) If J is a subgroup of H then
the preimage $\varphi^{-1}(J)$ is a subgroup of G.
(5) Ker φ is a subgroup of G
Froof (1) to (4): (Frop ||.1)
Proof of (5): *The identity $c_G \in \ker \varphi$ since $\varphi(c_G) = c_H$ by (1)
*(Closure) Suppose $x, y \in \ker \varphi$. Then $\varphi(xy) = \varphi(k) \varphi(y) = c_H c_H = c_H$
so $xy \in \ker \varphi$.
* (Inverses) Given $x \in \ker \varphi$, we need to show that $x^{-1} \in \ker \varphi$:
 $\varphi(x^{-1}) = [\varphi(x)]^{-1}$ by (2)
 $= (c_H)^{-1}$ since $x \in \ker \varphi$
 $= c_H$.
 $\frac{Lor}{Lor}$ If $\varphi: G \to H$ is an injective group homomorphism
then $G \cong \varphi(G)$.