Document last updated: Fri, Oct 1/ 2024

Abstract Algebra Notes Week 5 Wed, DCL 2 2024

$$\frac{Cor}{(Cor 6:13)} (K is a subgroup of H, and H is a subgroup of G),$$

$$\frac{Hen}{[G:K] = [G:H][H:K]}$$

$$\frac{Proof}{[G:K] = \frac{[G]}{[K]} = \frac{[G]}{[H]} \cdot \frac{[H]}{[K]} = \frac{[G:H][H:K]}{[K]}$$

$$D_{n} = group of Symmetries of a regular n-gon (n \ge 3)$$

$$\frac{Prop}{Prop} Let R denote the counterclockwise rotation by \frac{2\pi}{n},$$
and f any reflection across a line of symmetry.
Then D $D_{n} = \left[1d, R, R^{2}, \dots, R^{n-1} \right]$ rotations (including 1d)
$$reflections/ f, fR, fR^{2}, \dots, fR^{n-1} \right]$$

$$flips where the items on the list are distinct.
The powers of R are rotations
$$fR^{i} \text{ are reflections}.$$
(2) The order of each reflection is 2
The order of R is n, so $R^{-i} = R^{n-i}$

$$R^{-i} = R^{n-i}$$$$

$$\frac{Remark}{Remark} Since |reflection|=2,$$
we have $Rf = (Rf)^{-1} = f^{-1}R^{-1} = fR^{-1}$
These are So $Rf = fR^{-1}$ (equivalently $fRf = R^{-1}$
called
"relations" Similarly, $R^{i}f = fR^{-i}$ (equivalently, $fR^{i}f = R^{-i}$)

$$\frac{Prop}{Prop} \quad Dn \text{ is not abelian}$$

$$\frac{Proof}{Proof} \quad f(fR) = (ff)R = R \quad but \quad (fR)f = (R^{n-1}f)f = R^{n-1}$$
Since $n \ge 3$, R and R^{n-1} are distinct.
Garollary D_n is not cyclic.

Generators and Cayley diagrams

Def Let G be a group, and let S be a subset of G.
We say that S is a generating set of G
(or S is a set of generators for G)
if every elt in G is a finite product of
elts in S and their inverses. Notation:
$$G = \langle S \rangle$$

EX $D_n = \langle Rot(\frac{2\pi}{n}), f \rangle$ where f is any specific flip.
EX $S_n = \langle all transpositions \rangle = \langle (l_2), (23), ..., (n-1,n) \rangle$
 $S_4 = \langle (l_2), (23), (34) \rangle$, $S_3 = \langle (l_2), (23) \rangle$
EX $Z = \langle 1 \rangle = \langle -1 \rangle = \langle 2,3 \rangle = \langle 7,12 \rangle = \langle 2,3,5 \rangle$
Def S is called minimal if no proper subset of S
different than minimum
is a generating set of G.
EX $[2,3], [2,3,3], [1]$ are all generating sets of Z.
 $[2,3]$ and [1] are both minimal, and $[2,3,5]$ is not minimal.
Def Given a group G and a set of generators S,
a Cayley diagram (or Cayley graph) consists of

(1) vertices : all elts of G
(2) colored (or labeled) arrows : all elts in generating set S
* Write (X)
$$\xrightarrow{h}$$
 (y) (applying arrow h)
iff xh = y for some h \in S (applying arrow h)
means multiplying on the x (applying arrow h)
Note Following an h-arrow backwards means
multiplying on the right by h¹:
(X) \xrightarrow{h} (y) means y h⁻¹ = x
* If, in addition, h is its own inverse, then we
have xh = y iff x = xhh = yh
(X) \xrightarrow{h} (y) or (X) \xleftarrow{h} (y)
Our convention is to drop the tips on all
these two-way arrows: (X) \xrightarrow{h} (y)
Ex (ayley diagram for generating set $\{(12), (123)\}$ of
 $S_2 = \langle (12), (123) \rangle$
(12) \cdots (132) (123)
(23) \cdots (132) (123)

Note A Cayley diagram can be used as a "group calculator". Start at e, then chase the sequence through the Cayley graph. <u>Ex</u> What is RRFRRRF equal to? Ans: (123) What is RRFRRRFR¹ equal to? Ans: e

Note We can use a Cayley diagram to "see" the cyclic subgroup (X) generated by an elt X. Draw the path from e to X, then repeat the same path until we return to e. Notation For this visual reason, we will refer to (X) as the orbit of X.

 $E \times The orbit of (132) is \langle (132) \rangle = \langle R^2 \rangle = \{e, R^2, R\} = \{e, (132), (ns)\}$ The orbit of (13) is $\langle (13) \rangle = \langle Rf \rangle = \{e, Rf\} = \{e, (13)\}$ fR^2 We can visualize these orbits in an "orbit graph": * Every elt will be part of at least one orbit * Each cycle represents an orbit

Ex The orbit graph of S_3 : (13) (23) (12) (12) (12) (12) (123)

Sz has five distinct orbits (including [Id])

 $\begin{array}{l} \underline{\Pr_{rop}} \quad \text{If } H \leq A \quad \text{and} \quad K \leq B \quad \text{then} \quad H \times K \quad \text{is a subgroup of } A \times B \, . \\ \underline{\mathsf{E}_{\mathsf{X}}} \quad \mathbb{Z}_{3} \times \{0\} \quad \text{is a subgroup of } \mathbb{Z}_{3} \times \mathbb{Z}_{2} \\ \quad \left\{0, 2, 4\right\} \times \{0, 3\} \quad \text{is a subgroup of } \mathbb{Z}_{6} \times \mathbb{Z}_{6} \end{array}$

Ex Cayley diagram for generating set
$$\left[(0,1), (1,0) \right]$$
 of
 $Z_3 \times Z_2 = \langle (1,0), (0,1) \rangle$
The same graph rearranged:
 $\begin{pmatrix} (0,0) & \dots & (0,1) \\ (1,0) & \dots & (1,1) \\ (2,0) & \dots & (2,1) \\$

1) Identity
2) Counterclockwise rotation by
$$\frac{2\pi}{3}$$
 R: $A \rightarrow A$
3) Counterclockwise rotation by $\frac{4\pi}{3}$ RR: $A \rightarrow A$
4) Negative slope mirror flip f1: $A \rightarrow A$
5) Positive slope mirror flip f2: $A \rightarrow A$
6) Vertical mirror flip f2: $A \rightarrow A$
6) Vertical mirror flip f2: $A \rightarrow A$
7) Compositions of f1 and f2 give us all other motions:
7) Another generating set for D3 is $S = E f_{13} f_{2} 3$.
7) The Cayley graph for $\langle f_{13}, f_{2} \rangle$ is below:
8) $A = f_{2} (init) = f_{10} f_{2} (init)$
8) $A = f_{2} (init) = f_{10} f_{2} (init)$
8) $A = f_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = f_{10} f_{2} (init)$
8) $A = F_{2} (init) = F_{2} (init) = F_{2} (init)$
8) $A = F_{2} (init) = F_{2} (init) = F_{2} (init)$
8) $A = F_{2} (init) = F_{2} (init) = F_{2} (init)$
8) $A = F_{2} (init) = F_{2}$

initial state

2

fı

f2

List of examples so far

Group	order	Abelian?
always cyclic, Zn	n	yes
Z	\sim	yes
U(n)	# of k ([n] relatively prime with n	ye s
never R cyclic R	\sim	ye s
cyclic Sn for næ3	n (,	No for N>3
never Dn (n>3) cyclic	2n	No
not cyclic An for n>14	n! 2	No for n>> 4
never $GL_2(R)$ cyclic	0	No
for n>3 never Dn (n>3) not (n>3) not An for n>4 never GL2 (R) cyclic	$\frac{n!}{2}$	No for n>4 No

- end of file -