Document last updated: Fri, Oct 1 2024

Abstract Algebra Notes Week 5 Wed, Oct 2 2024

Recall Lemma Book Lemma ⁶ ³ Let ^G be ^a group ^H ^a subgroup and ^a b ^E ^G Then the following conditions are equivalent ^I aH bH ² Ha H5 ³ alt ^C bit ⁴ be alt 5 ^a belt Recall Im Lagrange Thm 6.10 Let ^G be ^a finite group H ^a subgroup Then 19 ^G ^H In particular 1H divides Gl Cort Let ^G be ^a finite ge ^G Then Igl divides G1 Cor6.17 Proof Exercise 44 ² If ¹⁶ ^p is prime then Every group of ¹ ^G is cyclic prime order 2 any non identity ge G is ^a generator is 9 ^c P Since ^p ² there is some non identity ge ^G Then ¹⁹¹ divides ^p by above Cor ¹ Since ^g ^e 1g ¹ so 1g p Therefore ^g has order p so ^g ^G

$$
\frac{Cor}{(Cor 6:13)} \begin{cases} 1 & \text{if } k \leq H \leq G \\ (Kr 6:13) & \text{if } i \leq a \text{ subgroup of } H_2 \text{ and } H_i \text{ is a subgroup of } G \text{)} \end{cases}
$$
\n
$$
\frac{Prof}{(Gr 6: k)} = \frac{1}{|G|} = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = \frac{1}{|G: H]}[H:K]
$$

Dihedral groups (Sec. 5.2) Let
$$
n \ge 3
$$
.

$$
D_n = group of symmetries of a regular n-gon (n)3
$$
\n
$$
Prop Let R denote the counterclockwise rotation by 2\pi
$$
\n
$$
and f any reflection across a line of symmetry.
$$
\n
$$
Then D_n = \{Id, R, R^2, ..., R^{n-1}\} for functions (including Id)
$$
\n
$$
reflections
$$
\n
$$
fifps
$$
\n
$$
where the items on the list are distinct.
$$
\n
$$
The powers of R are rotations.
$$
\n
$$
PR^i are reflections.
$$
\n
$$
Q
$$
\nThe order of each reflections is 2\n
$$
R^{i} = R^{n-i}
$$
\n
$$
R^{i} = R^{n-i}
$$
\n
$$
R^{i} = R^{n-i}
$$

Remark Part (1) of Prop above tells us that every
element of
$$
D_n
$$
 is a product of R and f .
We say D_n is generated by R and f .

$$
\frac{Remark}{\omega_{e} \text{ have }} |reflection| = 2 ,
$$
\n
$$
\omega_{e} \text{ have }} Rf = (Rf)^{-1} = f^{\dagger}R^{-1} = fR^{-1}
$$
\n
$$
\frac{d}{dt} \text{ and } Rf = fR^{-1} \text{ (equivalently } fRf = R^{-1}
$$
\n
$$
\frac{d}{dt} \text{ and } \frac{d}{dt} \text{ is a right.}
$$
\n
$$
\frac{d}{dt} \text{ is a right.}
$$

For
$$
n
$$
 is not abelian

\n $\frac{Proof}{1000f} + (fR) = (ff)R = R$ but $(fR)f = (R^n + f) f = R^{n-1}$

\nSince $n \geq 3$, R and R^{n-1} are distinct.

\n $\frac{Corollary}{1000f} + \frac{1}{100f} + \frac{1}{100f}$

Generators and Cayley diagrams

Def Let G be a group, and let S be a subset of G.

\nWe say that S is a generating set of G.

\n(or S is a set of generators for G)

\nif every
$$
ettn
$$
 G is a finite product of
\n etts in S and their inverses. Notation: $G = \langle S \rangle$

\nEx $D_n = \langle Act(\frac{2\pi}{n}), f \rangle$ where f is any $Specific$, fip .

\nEx $S_n = \langle all$ transpositions $\rangle = \langle (2), (23), ..., (n-1,n) \rangle$

\nSo $4 = \langle (12), (23), (34) \rangle$, $S_3 = \langle (12), (23) \rangle$

\nLet S is called minimal if no proper subset of S different than minimum
\nis a generating set of G.

\nEx $\{2,3\}, \{2,3,5\}, \{1\}$ are all generating sets of Z.

\n $\{2,5\}, \{2,3,5\}, \{1\}$ are all generaling sets of Z.

\nUse Given a group G and a set of generators S,

\na Caqueg diagram (or Cayley graph) consists of

1) vertices: all lets of G
\n2) colored (or labeled) arrows: all lets in generating set S
\n
$$
\ast
$$
 Write $(0, \frac{h}{2})$
\nif $x h = y$ for some $h \in S$
\n
$$
\frac{\text{Note: Following an h-arrow backgrounds. means multiple (y.g.)}}{\text{multipling on the right by t':}}
$$
\n
$$
\frac{h}{2} \rightarrow y
$$
\n
$$
\frac{h}{2}
$$

Note A Cayley diagram can be used as a "group calculator". Start at e, then chase the sequence through the Cayley graph. What is RRFRRRFF equal to? Ans: (123 what is RRfRRRRfR equal to Ans ^e

Note We can use a Cayley diggram to "see" the cyclic subgroup $\langle x \rangle$ generated by an elt X. Draw the path from e to x , then repeat the same path until we return to ^e Notation For this visual reason, we will refer to $\langle x \rangle$ as the <u>orbit</u> of x

 EX The orbit of (132) is $\langle (132) \rangle = \langle R^2 \rangle = \{e, R^2, R\} = \{e, (132), (ln)\}$ The orbit of (13) is $\langle (13)\rangle = \langle f f \rangle = \{e, f f\} = \{e, (13)\}$ fR We can visualize these orbits in an orbit graph Every elf will be part of at least one orbit Each cycle represents an orbit

 $\frac{Ex}{x}$ The orbit graph of S_3 : $(13)^{23}$ $(12)^{22}$ \overline{d} (123)

 S_3 has five distinct orbits (including $E(d)$)

Cayley diagrams of direct products Let A ^B be groups and let ea eps denote the identities of^A ^B respectively Given ^a Cayley diagram of group ^A ^w generators 91,92 9k and ^a Cayley diagram of group B ^w generators be be be we can construct ^a Cayley diagram for direct product AxB Vertices ^a ^b for each aeA be ^B often arranged in ^a rectangular grid Generators Can ^B CareB and ea.br CA.be Ex Cayley diagram for 23 with generator ¹ 2 Cayley diagram for 22 with generator ¹ ⁰ ^I Cayley diagram of 23 22 ^w generators 0,1 and 1,0 Ro Coils c 401

 \Pr_{op} If H $\leq A$ and $K \leq B$ then $H \times K$ is a subgroup of $A \times B$. E_X $Z_3 \times$ {0} is a subgroup of $Z_3 \times Z_2$ $\{0, 2, 4\} \times \{0, 3\}$ is a subgroup of $\mathbb{Z}_6 \times \mathbb{Z}_6$

 $(2,0)$ $(2,1)$

Ex	Cayley diagram for generating set $\{0, 0, 0, 0\}$ of $\mathbb{Z}_3 \times \mathbb{Z}_2 = \langle 0, 0, 0, 0, 0 \rangle$
$\mathbb{Z}_3 \times \mathbb{Z}_2 = \langle 0, 0, 0, 0, 0 \rangle$	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, \dots\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\ 0, 0, 0\n \end{array}$ \n	
$\begin{array}{c}\n 0, 0, \dots, 0, 0 \\$	

$$
\frac{t_X}{\underline{\hspace{1cm}}} \quad D_3 \quad \text{has} \quad \text{6} \quad \text{elts}:
$$

1) Identify
\n2) Counterclockwise rotation by
$$
\frac{2\pi}{3}
$$
 R: $\frac{2}{3}$ $\mapsto \frac{1}{3}$
\n3) Counterclockwise rotation by $\frac{4\pi}{3}$ RR: $\frac{4}{3}$ $\mapsto \frac{1}{3}$
\n4) Negative slope mirror flip f₁: $\frac{4}{3}$ $\mapsto \frac{4}{3}$
\n5) Positive slope mirror flip f₂: $\frac{4}{3}$ $\mapsto \frac{4}{3}$
\n6) Vertical mirror flip f₃: $\frac{4}{3}$ $\mapsto \frac{4}{3}$
\n6) Vertical mirror flip f₃: $\frac{4}{3}$ $\mapsto \frac{4}{3}$
\n1.6
\n1.6
\n1.6
\n2.7
\n2.7
\n3.7
\n4.8
\n5.7
\n6.9
\n7.8
\n8.1
\n1.7
\n1.8
\n1.9
\n1.1
\n2.1
\n3.1
\n4.1
\n5.1
\n6.1
\n1.1
\n1

 $\frac{1}{\ln 1 + \ln |\sin \theta|}$

 $\frac{1}{2}f_2$ | f

lar
I

List of examples so far

 $\rule{1em}{0.15mm}$ end of \int ile $\rule{1em}{0.15mm}$