Document last updated: Thurs, Sep 19 2024

Abstract Algebra Notes Week 3 Wed, Sep 18 2024

Today# Break before 8pmNext weekQuit 2Tue: Hw 03 due by emaillecture : laws of exponentWed: Quit 3(w/ induction)(Topic: today's group quit)cyclic groupGroup quit

Def A subset of S is called proper if it's not equal to S

<u>Def</u> G group. The subgroup [e] is called the <u>trivial subgroup</u> of G. A subgroup of G is called proper if it's a proper subset of G.

Ex Let
$$5\mathbb{Z} \stackrel{\text{def}}{=} [5k: k\in\mathbb{Z}]$$
 be the set of all multiples of 5.
Then (1) $0 \in 5\mathbb{Z}$
(2) $5\mathbb{Z}$ is closed under $+: 5k_1 + 5k_2 = 5(k_1 + k_2)$
(3) $5\mathbb{Z}$ is closed under taking inverses:
Inverse of $5k$ is $-f(k) = 5(-k) \in 5\mathbb{Z}$
Thus $5\mathbb{Z} \stackrel{\text{def}}{=} \mathbb{Z}$
is a subgroup of
Prop By the same reasoning, for any fixed $n \in \mathbb{Z}$,
the set $n\mathbb{Z} = \{nk: k\mathbb{Z}\}$ of all multiples of n
is also a subgroup of \mathbb{Z} .
Ex: Subgroups of $\mathbb{Z}_q = \{0, 1, 2, 3\}$:
 \mathbb{Z}_q
 $\{0, 2\}$ if 1 is in H, then $(1, 1+1, 1+1+1, 1+1+1) \in H$
This is called the subgroup lattice. Writing \int_H^{∞} oneans $H \leq G$.
Ex: Subgroup lattice of $u(8) = \{1, 3, 5, 7\}$
 (13)
 $(1, 5)$ $(1, 2)$
 (13)
 $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) $(1, 5)$ $(1, 2)$
 (13)
 (13) (13) (13)
 (13)
 (13) (13) (13)
 (13) (13) (13)
 (13) (13) (13) (13)
 (13) (13) (13) (13)
 (13) (13) (13) (13) (13) (13)
 (13) $(1$

<u>Remark</u> Both Zq and U(10) are both groups of order 4, but we know they are not "the same" because they have distinct subgroup lattices. Principle of Well-ordering:

If S is a non-empty subset of the natural numbers IN,

then S has a least element.

The Principle of Well-ordering is equivalent to the Principle of Mathematical Induction

Principle of Mathematical Induction Let P(n) be a statement which depends on n $IF : P(n_0)$ is true (base case) . For every $k \ge n_0$, P(k) implies P(k+1) (inductive step) THEN P(n) is true for all $n \ge n_0$.

Law of exponents (See Sec 3.2) $g^n \stackrel{\text{def}}{=} g \dots g$, $g^{-n} \stackrel{\text{def}}{=} g^{-1} \dots g^{-1} \stackrel{\text{def}}{=} (g^{-1})^n$, $g^o = e$ Recall n times Thm 1 Let G be a group, g E G. Then $(q^n)^{-1} = q^{-n}$ for $n \in \mathbb{N}$ Proof We will apply induction on n. (Done during class) <u>Base case n=1</u>: $(q^{1})^{-1} = q^{-1} = (q^{-1})^{1}$ by def. Inductive hypothesis Inductive Step: Suppose for some $k \in \mathbb{N}$ that $(g^k)^{-1} = g^{-k} = /g^{-1})^k$ (we need to show $(g^{k+1})^{-1} = g^{-(k+1)} \stackrel{\text{def}}{=} (g^{-1})^{k+1}$) $\left(q^{k+1}\right)^{-1} = \left(q^{1} q^{k}\right)^{-1}$ by def = (gk)⁻¹ g⁻¹ by "socks-shoes" property of inverses $= (q^{-1})^k (q^{-1})^1$ by the inductive hypothesis = (g⁻¹)^{k+1} by def \Box Thm 2 Let G be a group, gEG. Then gm+n = gmgn for all min EZ. Proof (long) Proof idea: Induction on n for mEZ, nEN Do the case mEZ, nEZ<0 separately · Case m E Z, n=0 : qm+0 = qme = qmg° since g°:=e

• Case
$$m \in \mathbb{Z}$$
, $n \in \mathbb{N}$: We will prove this by induction on n
Base case $n=1$:
if $m=0$, then $g^{0+1} = eg^1 = g^0 g^1$
if $m > 0$, then $g^{m+1} = gg \cdots g = g^m g^1$ by def
 $m+1$ times

Also
$$g^{-m} = (g^{-1}) \cdots (g^{-1}) = (g^{-1})^{m}$$
,
So $g^{-m+1} = g^{-(m-1)}$
 $= \underbrace{g^{-1} g^{-1} \cdots g^{-1}}_{m-1 \text{ times}}$
 $= \underbrace{g^{-1} g^{-1} \cdots g^{-1}}_{m-1 \text{ times}} g^{-1} g$
 $= (g^{-1})^{m} g^{1} = g^{-m} g^{1}$
This shows that for all $m \in \mathbb{Z}$, $g^{m+1} = g^{m} g^{1}$.

Induction step
Suppose that for some
$$k \ge 1$$
 we have
 $g^{m+k} = g^m g^k$ (we need to prove $g^{m+k+1} = g^m g^{k+1}$)
 $g^{m+k+1} = g^{m+k} g^1$ by the base case
 $= g^m g^k g^1$ by the inductive hypothesis
 $= g^m g^{k+1}$ by the base case.

Thus, by induction, for all mEZ, we have $g^{m+n} = g^m g^n$ for $n \in \mathbb{N}$ (*) · Case m E Z, n < 0:

We will show
$$g^{m-n} = g^m g^{-n}$$
 for any integer $n \ge 1$.
 $g^m = g^{m-n+n}$
 $= g^{m-n} g^n$ by (*)
Multiply on the right by g^{-n} :
 $g^m g^{-n} = g^{m-n} g^n g^{-n}$
 $g^m g^{-n} = g^{m-n} g^n (g^n)^{-1}$ by above Thm 1
So $g^m g^{-n} = g^{m-n}$.
This concludes the proof that,

for any mine Z, we have
$$g^{mtn} = g^m g^n$$

— end of proof of Thm 2 —

Thm 3 Let G be a group,
$$g \in G$$
.
Then $(g^m)^n = g^{mn}$ for $m, n \in \mathbb{Z}$
Pf • Case $n=0$ or $m=0$:
If $n=0$, then $(g^m)^n = (g^m)^o \stackrel{def}{=} e \stackrel{def}{=} g^o = g^{mo} = g^{mn}$ for all $m \in \mathbb{Z} \setminus Similar$ argument for when $m=0$

· case m EZ, n E IN:

We will prove this by induction on n.
Base case n=1: For all
$$M \in \mathbb{Z}$$
, $(g^m)! = g^m = g^{m:1}$
Induction step
Suppose that for some $k \ge 1$ we have
 $(g^m)^k = g^m k$ (we need to prove $(g^m)^{(k+1)} = g^{m(k+1)}$)
Then $(g^m)^{k+1} = (g^m)^k (g^m)!$ by Thm 2
 $= g^{mk} g^m$ by the inductive hypothesis
 $= g^{mk+m}$ by Thm 2
 $= g^{m(k+1)}$
Thus, by induction, for any $M \in \mathbb{Z}$ and $n \in \mathbb{N}$, $(g^m)^n = g^{mn}$

· Case first exponent is positive, second exponent is negative:

Assume
$$m, n > 0$$
. Then

$$\begin{pmatrix}
\begin{pmatrix}
g^{\text{ms}} \\
g^{\text{ms}}
\end{pmatrix} \in n \\
g^{\text{ms}} \\
f^{\text{ms}} = (g^{\text{ms}})^{n}^{-1} & \text{by Thm 1} \\
= (g^{\text{ms}})^{-1} & \text{by } \\
= g^{-mn} & \text{by Thm 1} \\
= g^{m(-n)}$$

. Case both exponents are negative:

Assume m, n > 1.

Note that, for any h
$$\in G$$
 and $s \in N$,
 $(h^{s})^{-1} = h^{-s} = (h^{-1})^{s}$
 $Thm 1$
 $Then (g^{-m})^{-n} = ((g^{-1})^{m})^{-n}$
 $= (((g^{-1})^{-1})^{m})^{n}$
 $= (g^{m})^{-1} by$ "socks-shoes property"
 $(g^{-1})^{-1} = g$
 $= g^{mn} by$
 $= g^{mn} by$
 $Thm 3$

The
$$\langle x \rangle$$
 is the smallest subgroup of G containing x,
meaning: if $H \leq G$ and $x \in H$ then $\langle x \rangle \leq H$.

ProofSuppose
$$x \in H$$
 for some subgroup $H \leq G$.We need to show $x^k \in H$ for all $k \in \mathbb{Z}$. $k^{\circ}o: x^{\circ} = e \in H$ (by requirement that H contains the identity) $k^{\circ}o: x^{\circ} = e \in H$ (by requirement that H contains the identity) $k \in IN: x^k = x \times \dots \times e \in H$ (since H is closed under the
group operation) $k^{-1}: x^{-1} \in H$ (Since H contains the inverse of each $h \in H$) $k \in \mathbb{Z}_{d-1}: x^{-k} = (a^{-1})^k \circ a^{-1} \dots a^{-1} \in H$ (again by closure) $There fore < x^{>} = \{x^k: k \in \mathbb{Z}\} \leq H$.Def $\langle x \rangle$ is called the cyclic subgroup of G generated by x .DefA group G is called a cyclic group if $G = \langle x \rangle$ for some $x \in G$, and x is called a generator $\langle t \rangle = \mathbb{Z} = \langle -1 \rangle$ Ex Z is cyclic, 1 is a generator. $\langle t \rangle = \mathbb{Z} = \langle -1 \rangle$ Ex Z_{12} is cyclic, 1 is a generator. $Other possible generators are $5, 7, 11$ h fact, every \mathbb{Z}_n is cyclic. Ex $U(8)$ is mot cyclic. We saw $\langle x \rangle \neq U(8)$ for all $x \in U(8)$.$

From earlier: $\langle 1 \rangle = [1]$ $\langle 5 \rangle = [1, 5]$ $\langle 3 \rangle = [1, 3]$ $\langle 7 \rangle = [1, 7]$

$$E_{X} \quad U(q) = \{1, 2, 4, 5, 7, 8\} \quad \text{is cyclic.} \qquad \{U(5) = \{1, 2, 3, 4\} \quad \text{from} \\ \text{today's guiz is also} \\ \text{cyclic.} \\ 2 \quad \text{is a generator:} \\ 1 \xrightarrow{\times 2} 2 \xrightarrow{\times 2} 4 \xrightarrow{\times 2} 8 \xrightarrow{\times 2} 7 \xrightarrow{\times 2} 5 \\ \times 2 \\ \text{This is a Cayley graph for } U(q) \end{cases} \qquad \{U(5) = \{1, 2, 3, 4\} \quad \text{from} \\ \text{today's guiz is also} \\ \text{cyclic.} \\ 2 \quad \text{is a generator:} \\ 1 \xrightarrow{\times 2} 2 \xrightarrow{\times 2} 4 \xrightarrow{\times 2} 8 \xrightarrow{\times 2} 7 \xrightarrow{\times 2} 5 \\ \times 2 \\ \text{This is a Cayley graph for } U(q) \end{cases} \qquad \{This is a Cayley graph \\ \text{for } U(s) \\ \hline \frac{\text{Fact} / \text{Def}}{\text{Any cyclic froup }} \text{Any cyclic froup } \langle \times \rangle \text{ has Cayley graph } \\ e \xrightarrow{\times} \times \xrightarrow{\times} x^2 \xrightarrow{\times} x^3 \xrightarrow{\to} \dots \times x^{n-1} \quad \text{if } |x| = n \\ \text{"order of } x'' \\ \dots \xrightarrow{\times} x' \xrightarrow{\to} e \xrightarrow{\times} x \xrightarrow{\to} x^2 \xrightarrow{\times} x^3 \xrightarrow{\to} \dots \quad \text{if } x \text{ has infinite arder} \\ \hline \frac{E_X}{\text{cycles}} \mathbb{Z}_4 = \langle 1 \rangle \qquad 0 \xrightarrow{\pm 1} 1 \xrightarrow{\pm 1} 2 \xrightarrow{\pm 1} 1 \xrightarrow{\pm 1} 0 \xrightarrow{\pm 1} 1 \xrightarrow{\pm 1} 2 \xrightarrow{\pm 1} 3 \xrightarrow{\pm 1} \dots \xrightarrow{\pm 1} 1 \xrightarrow{\pm 1} 0 \xrightarrow{\pm 1} 1 \xrightarrow{\pm 1} 2 \xrightarrow{\pm 1} 3 \xrightarrow{\pm 1} \dots$$

$$\frac{Remark}{1 + |x| = n}, \langle x \rangle \text{ has a Cayley graph that is the same as a Cayley graph of \mathbb{Z}_n , so $\langle x \rangle$ is "the same" as \mathbb{Z}_n .$$

• If
$$|x| = \infty$$
, $\langle x \rangle$ has a Cayley graph that is the same
as a Cayley graph of \mathbb{Z} , so $\langle x \rangle$ is "the same" as \mathbb{Z} .

- Every cyclic group is abelian
- If
$$|X|=n \in \mathbb{N}$$
, then $c_1X_1, X^2, \dots, X^{n-1}$
are distinct elements of G
(no two powers in this list are equal)
and $X^i = X\overline{J}$ iff $n | (i-\overline{J})$

- If
$$|x| = \infty$$
, then for all $k, l \in \mathbb{Z}$,
if $k \neq l$ then $a^k \neq a^d$.

$$\frac{\left[\text{brollary}\right]}{\text{then } |x| \leq |G| \quad \text{for all } x \in G.$$

$$|x| = |G| \quad \text{iff} \quad G = \langle x \rangle.$$

$$\frac{\text{Pf}}{\text{f}} \quad \langle x \rangle \text{ is a subset of } G. \text{ and above}$$
we wrote that the cardinality of $\langle x \rangle$ is $|x|.$

$$\frac{\text{Ex}}{\text{tex}} \quad \text{Let } R \text{ be counterclockwise rotation by 90°}$$

$$\frac{\text{Then } \langle R \rangle = \left[R_1 R^2, R_1^3, \text{Id}\right] \text{ is the same as } \mathbb{Z}_4$$

$$\frac{Rotation}{180°} \frac{Rotation}{270°}$$

$$\frac{\text{Ex}}{\text{tex}} \quad \text{Let } R \text{ be counterclockwise rotation by } \sqrt{2}^{-1}$$

$$\frac{\text{Then } \langle R \rangle = \left[\dots, \tilde{K}_1^2 \tilde{K}_1^2 / d, R_1 R^2, R_1^3, \dots\right]}{\text{because there are no } K. l. such that $k \sqrt{2} = l. 360,$

$$\frac{\text{and } \langle R \rangle}{\text{ is the same group as } \mathbb{Z}}$$$$

Then
$$\langle \tau \rangle = \left\{ (1265), (16)(25), (1562), 1d \right\}$$

 $= \left\{ \tau, \tau^{2}, \tau^{3}, c \right\}, \text{ the same group as } \mathbb{Z}_{4}$
Ex Let $\tau = (126)(45) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 3 & 5 & 4 & 1 & 7 \end{bmatrix}$ in S_{7} Exercise:
 $\tau^{2} = (126)(45)(126)(45) = (162)$ find $\langle \tau \rangle$
 $\tau^{3} = \underbrace{(162)}_{\tau^{2}} \underbrace{(126)(45)}_{\tau} = (45)$ Note: $(126)^{-1} = (162)$
 $\tau^{4} = \underbrace{(45)}_{\tau^{3}} \underbrace{(126)(45)}_{\tau} = (126)$
 $\tau^{5} = (126)(126)(45) = (126)$
 $\tau^{5} = (126)(126)(45) = (162)(45)$
 $\tau^{6} = (162)(45)(126)(45) = 1d$
Then $\langle \tau \rangle = \{\tau, \tau^{2}, \tau^{3}, \tau^{4}, \tau^{5}, 1d \}, \text{ the same group as } \mathbb{Z}_{6}$

Thm (Division algorithm) Let $a, b \in \mathbb{Z}$ w b > 0. Then there exist unique integers q and r such that a = bq + rwhere $0 \le r < b$

Case 1: H is the trivial subgroup
$$\{e\}$$
.
Then $H = \langle e \rangle$ is cyclic

$$(Extra notes)$$

$$Claim H = \langle x^{m} \rangle$$

$$Proof of Claim$$

$$Since $x^{m} \in H$, we know $\langle x^{m} \rangle \in H$
of "the subgroup generated by x^{m} "
$$("the smallest subgroup of H containing x^{m} ")
$$Next, we will prove H \leq \langle x^{m} \rangle$$

$$Let h \in H. Since H \leq G = \langle x \rangle, we have h = x^{k}$$
 for some $k \in \mathbb{Z}$

$$By the division algorithms, there are $q, r \in \mathbb{Z}$ with $o \leq r < m$
such that
$$k = mq + r$$

$$Thus h = x^{k} = x^{m}t^{k}r = x^{m}t^{k}$$
 by Thm 2
$$Multiply x^{k} = x^{m}t^{k}$$
 on the left by $x^{-m}t$;
$$x^{-m}t^{k} x^{k} = x^{r}$$

$$Since x^{k} = h \in H$$
 (by assumption) and $x^{m} \in H$ (by t^{m}).
$$We said cartier that m is the smallest positive integer cuch that $x^{m} \in H$.$$$$$$$$

Thus
$$k = mq$$
, and $h = X^{k} = X^{m} = (X^{m})^{\gamma} \in \langle X^{m} \rangle$.
This proves $H \leq \langle X^{m} \rangle$.
— The end of proof —

$$\frac{Thm}{Let G be a group Cnot necessarily cyclic)}, \frac{(Extra notes)}{Let x \in G be of order n.}$$

$$If k \in \mathbb{N}, \quad \langle x^k \rangle = \langle x^{gcd(n,k)} \rangle$$
and $|x^k| = \frac{n}{gcd(n,k)}$
In particular,

- $\langle x \rangle = \langle x^{j} \rangle$ iff gcd(n, j) = 1
- In \mathbb{Z}_n , $\langle 1 \rangle = \langle j \rangle$ $\mathcal{H} gcd(n, j) = 1$

$$\frac{for}{for}$$
 The order of an elt of a finite cyclic group
divides the order of the group.
$$\frac{Pf}{f}$$
 let n be the order of x.
An elt of $\langle x \rangle$ is of the form x^k ,
so its order is $\frac{n}{gcd(n,k)}$

$$\frac{E_{X}}{E_{X}} = \left\{ 0, 1, \dots, 29 \right\} = \langle 1 \rangle = \langle 7 \rangle = \langle 11 \rangle = \dots = \langle 27 \rangle$$
Order of Z₂₀ is 30.
Elt 20 has order $\frac{30}{9cd(30,20)} = \frac{30}{10} = 3$.
Elt 4 has order $\frac{30}{9cd(30,4)} = \frac{20}{2} = 15$

- Thm For each positive divisor k of n, the set < T > is the unique subgroup of Zn of order k. These are the only subgroups of Zn.
- Ex Subgroup lattice for Z30:

