Document last updated: Thurs, Sep 19 2024

Abstract Algebra Notes Week 3 Wed, Sep 18 2024

Today & Breek before 8pm Next week Tue: Hwo3 due by email $Quit 2$ lecture laws of exponent wed Quiz ³ (*W*) induction) (lopic: today's group quit
Cyclic group Group quiz

Def ^A subset of ^S is called proper if it's not equal to ^S

Def G group. The subgroup $\{e\}$ is called the trivial subgroup of G . ^A subgroup of ^G is called proper if it's ^a proper subset of ^C

Ex Let
$$
5Z^{\frac{def}{2}}[5k : k \in \mathbb{Z}]
$$
 be the set of all multiples of 5.

\nThen 0 0 ϵ 5Z

\n② 5Z is closed under +: $5k_1+5k_2 = 5(k_1+k_2)$

\n③ 5Z is closed under taking invers:

\n\n- Inverse of 5k is $-5k$?
\n
\nThus $5Z \underset{5}{\leq} Z$

\nThus $5Z \underset{5}{\leq} Z$

\nHow see $5R$ is $-5k$?

\nHere, the same reasoning, for any fixed $n \in \mathbb{Z}$.

\nHere, the set $nZ = \{nk : k Z\}$ of all multiples of n .

\nEx: Subgroups of $Z_4 = \{0, 1, 2, 3\}$:

\n24

\n1

\n1

\n24

\n1

\n25

\n3.5

\n4

\n5.6

\n6

\n7

\n8

\n1

\

Remark Both \mathbb{Z}_4 and $U(10)$ are both groups of order $4,$ but we know they are not "the same" because they have distinct subgroup lattices

Principle of Well-ordering:

If S is a non-empty subset of the natural numbers \mathbb{N}_1

then S has ^a least element

The Principle of Well ordering is equivalent to the Principle of Mathematical Induction

Principle of Mathematical Induction Let P(1) be a statement which depends on n $IF : P(n_0)$ is true (base case) . For every $k \geq n_0$, $P(k)$ implies $P(k+1)$ (inductive step) THEN $P(n)$ is true for all $n \geq n_0$.

 $\begin{bmatrix} \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \end{bmatrix}$ (See Sec 3.2) Recall 9 $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{2}$ = $\frac{1}{3}$ = $\frac{1}{3$ $Thm 1$ Let G be a group, $g \in G$. Then $(q^n)^{-1} = q^{-n}$ for $n \in \mathbb{N}$ Proof We will apply induction on n. [Done during class) <u>Base case $n=1$ </u>: $(q^{1})^{-1} = q^{-1} = (q^{-1})^{1}$ by def nductive step:
Inductive step:
1 0 0 Suppose for some $k \in \mathbb{N}$ that $(a^k)^{-1} = a^{-k}$ n k \tilde{U} We need to show $(g^{k+1})' = g^{-(k+1)} \frac{def}{=} (g^{-1})^{k+1}$ a^{k+1} ¹ = $(a^1 a^k)$ ¹ by def g^k) g by socks-shoes property of g^{-1}) (g^{-1}) by the inductive hypothesis g^{-1}) $^{\kappa + \tau}$ by def \Box Thm 2 Let G be a group, ge G Then $g^{m+n} = g^m g^n$ for all $m, n \in \mathbb{Z}$. $\begin{array}{ccc} \text{Proof} & \text{(long)} & \text{Proof} & \text{ideal} : \text{Induction on } n \text{ for } m \in \mathbb{Z}, n \in \mathbb{N} \ & \text{Do the case } m \in \mathbb{Z}, n \in \mathbb{Z}_{\geq 0} & \text{separo} \end{array}$ Do the case $m \in \mathbb{Z}_2$, $n \in \mathbb{Z}_{\leq 0}$ separately $case \text{ } m \in \mathbb{Z}, n = 0; q^{m+0} = q^m e = q^m g^o$ since $q^o = e$

• **Case me Z,
$$
n \in IN
$$
:** We will prove this by induction on n
\nBase case $n = 1$:
\nif $m = 0$, then $q^{o+1} = eq^{1} = q^{o} q^{1}$
\nif $m > 0$, then $q^{m+1} = q q \cdot q^{1}$
\n $m+1 + 1$ times

$$
A1_{SO} \quad q^{-m} = (q^{-1}) \cdots (q^{-1}) = (q^{-1})^{m},
$$
\n
$$
S_{O} \quad q^{-m+1} = q^{-m-1}
$$
\n
$$
= \underbrace{q^{-1}q^{1} \cdots q^{1}}_{m-1 \text{ times}}
$$
\n
$$
= \underbrace{q^{-1}q^{1} \cdots q^{1}}_{m-1 \text{ times}}
$$
\n
$$
= (q^{-1})^{m} q^{1} = q^{-m} q^{1}
$$
\nThis shows that f or all $m \in \mathbb{Z}$, $q^{m+1} = q^{m} q^{1}$.

Induction Step
\nSuppose that for some
$$
k \ge 1
$$
 we have
\n
$$
a^{m+k} = a^m a^k
$$
 (we need to prove $a^{m+k+1} = a^m a^{k+1}$)
\n
$$
a^{m+k+1} = a^{m+k} a^1
$$
 by the base case
\n
$$
= a^m a^{k} a^1
$$
 by the inductive hypothesis
\n
$$
= a^m a^{k+1}
$$
 by the base case.

Thus, by induction for all $m\in\mathbb{Z}$, we have $g^{m+n} = g^{m}g^{n}$ for $n \in \mathbb{N}$ \circ Case $m \in \mathbb{Z}$, $n < o$:

We will show
$$
g^{m-n} = g^m g^{-n}
$$
 for any integer $n \ge 1$.
\n
$$
g^m = g^{m-n+n}
$$
\n
$$
= g^{m-n} g^n
$$
\nby (1)

for any
$$
m, n \in \mathbb{Z}
$$
, we have $q^{m+n} = q^m q^n$
and of proof of $Thm 2$

Thm 3 Let G be a group,
$$
g \in G
$$
.

\nThen $(g^m)^n = g^{mn}$ for $m, n \in \mathbb{Z}$

\nIf case $n = 0$ or $m = 0$:

\nIf $n = 0$, then $(g^m)^n = (g^m)^o \stackrel{def}{=} e^{\int_0^1} g^o = g^{mo} = g^{mn}$ for all $me \in V$

\nSimilar argument for when me^o

 $rac{case}{}$ m $\in \mathbb{Z}$, $\eta \in \mathbb{N}$:

We will prove this by induction on n.
\nBase case n=1: For all
$$
m \in \mathbb{Z}
$$
, $(q^m) = q^m = q^{m-r}$
\nInduction Step
\nSuppose that for some $k \ge 1$ we have
\n $(q^m)^k = q^{m-k}$ (we need to prove $(q^m)^{(k+r)} = q^{m(k+r)}$)
\nThen $(q^m)^{k+r} = (q^m)^k (q^m)^{r}$ by Thm 2
\n $= q^{mk+m}$ by the inductive hypothesis
\n $= q^{mk+m}$ by Thm 2
\n $= q^{mk+r}$
\nThus, by induction, for any $m \in \mathbb{Z}$ and $n \in \mathbb{N}$, $(q^m)^n = q^{mn}$

case first exponent is positive, second exponent is negative:

Assume
$$
m, n > 0
$$
. Then
\n
$$
\begin{pmatrix}\n\frac{p \cdot s}{m} & \frac{n \cdot s}{n} \\
\frac{1}{m} & \frac{1}{m}\n\end{pmatrix} = \left(\frac{a^m}{a^m}\right)^n \begin{pmatrix} -1 & b \cdot y & \frac{1}{m} \\
\frac{1}{m} & \frac{1}{m} & \frac{1}{m}\n\end{pmatrix} = \left(\frac{a^m}{a^m}\right)^n
$$
\n
$$
= \frac{a^{-mn}}{a^m} = \frac{b \cdot y \cdot \boxed{m \cdot 1}}{a^m}
$$

. Case both exponents are negative!

Assume $m, n \geqslant 1$.

Note that, for any
$$
h \in G
$$
 and $s \in N$,
\n $(h^{s})^{-1} = h^{-s} = (h^{-1})^{s}$
\n $\boxed{\text{Thm 1}} = (\overline{g}^{-1})^{m} = ((\overline{g}^{-1})^{m})^{m}$
\n $= (((\overline{g}^{-1})^{m})^{n})^{m}$
\n $= (((\overline{g}^{-1})^{-1})^{m})^{n}$
\n $= (g^{m})^{n}$ by "socks-shoes property"
\n $= g^{mn}$ by (g⁻¹)⁻¹ = g
\n $= g^{mn}$ by (g⁻¹)⁻¹ = g
\n $= g^{mn}$ by (g⁻¹)⁻¹ = g

When
$$
f: (x,y)^k
$$
 need not equal $x^k y^k$ in a non-abelian group

\n
$$
\frac{C_9C_1C}{x^6C_3} = \frac{1}{2}x^k + k \in \mathbb{Z}
$$
\n
$$
\frac{C_9C_1C}{x^4} = \frac{1}{2}x^k + k \in \mathbb{Z}
$$
\n
$$
\frac{1}{11} + \frac{1}{11}x^6 - \frac{1}{11}x^6 - \frac{1}{11}x^6 + k \in \mathbb{Z}
$$
\n
$$
\frac{1}{11} + \frac{1}{11}x^6 - \frac{1}{11}x^7 - \frac{1}{1
$$

$$
\frac{\pi_{hm}}{\pi_{hmp}} \quad \langle x \rangle \text{ is the smallest subgroup of } G \text{ containing } x \text{ ,}
$$
\n
$$
\text{ meaning: if } H \leq G \text{ and } x \in H \quad \text{then } \langle x \rangle \leq H.
$$

Proof	Suppose $x \in H$ for some subgroup $H \leq G$,
We need $+b$ show $x^k \in H$ for all $k \in \mathbb{Z}$.	
$k \cdot o$:	$x^0 = e \in H$ (by requirement that H contains the identity)
$k \in \mathbb{N}$:	$x^k = \underbrace{x \times \dots x}_{k \text{ times}}$ $\in H$ (since H is closed under the formula)
$k \in \mathbb{Z}_{\leq -1}$:	$x^{-k} \in H$ (Since H contains the inverse of each $h \in H$)
$k \in \mathbb{Z}_{\leq -1}$:	$x^{-k} \in [a^{-1})^k = \underbrace{a^1 \dots a^t}_{k \text{ times}}$ $\in H$ (again by closure)
Therefore $\langle x \rangle = \{ x^k : k \in \mathbb{Z} \} \leq H$.	
Def	$\langle x \rangle$ is called $\frac{4h}{2}$ + $\frac{4h}{2}$ + $\frac{4}{2}$ + $\frac{4}{2}$
Def	$\langle x \rangle$ is called a <i>equlic group</i> if $G = \langle x \rangle$
For some $x \in G$, and x is called a <i>generator</i> of G .	
Ex	Z is c_0 or c_1 is also a generator.
$\langle x \rangle = \mathbb{Z} = \langle x \rangle$	
Ex	Z_1 is <i>c</i> of c_1 is a generator.
$\langle x \rangle = \mathbb{Z} = \langle x \rangle$	

From earlier: $\langle 1 \rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\langle 5 \rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 3 $>$ $\{1,3\}$ $\langle 7 \rangle$ = 1 $1,1$

Ex
$$
u(\tau) = \{1, 2, 4, 5, 7, 8\}
$$
 is cyclic. $\{u(\xi) = \{1, 2, 3, 4\}$ from
\n $2 \text{ is a generator:}$

\nThus, $1 \leq \frac{x^2}{2} \leq \frac{x^2}{4} + \frac{x^2}{3} \leq \frac{x^2}{2} + \frac{x^2}{4} \leq \frac{x^2}{2} + \frac{x^2}{2} \leq \frac{x^2}{2} \leq \frac{x^2}{2} + \frac{x^2}{2} \leq \frac{x^2}{2} \leq \frac{x^2}{2} \leq \frac{x^2}{2} \leq \frac{x^2}{2} \leq \frac{x^2}{$

Remark
• If
$$
|x| = n
$$
, $\langle x \rangle$ has a Cayley graph that is the same
as a Cayley graph of \mathbb{Z}_{n} , so $\langle x \rangle$ is "the same" as \mathbb{Z}_{n} .

- . If $|x| = \infty$, $\langle x \rangle$ has a Cayley graph that is the same as a Cayley graph of \mathbb{Z}_3 so $\langle x \rangle$ is the same" as \mathbb{Z}_2 .
- . Properties about \mathbb{Z}_n and \mathbb{Z} hold for any cyclic group:

- Every cyclic group is abelian
\n- If
$$
|x| = n \in N
$$
, then $c_3x, x^2, \dots, x^{n-1}$
\nare distinct elements of G
\n(no two powers in this list are equal)
\nand $x^i = x^i$ iff $n | (i - j)$

$$
- If |x| = \infty
$$
, then $- \int_{0}^{\infty} a || k, L \in \mathbb{Z}$,
if $k \neq L$ then $a^{k} \neq a^{l}$.

$$
-\|f\|_{G} = \langle x \rangle
$$
 is a cyclic group ω generated as x ,
then
$$
\underbrace{|G|}_{order} |x|
$$

Corollary	IF	G is a finite group,
then	x \nleq G	-for all $x \in G$.
x = G	-ifff	$G = \langle x \rangle$.
PF	$\langle x \rangle$ is a subset of G, and above.	
we wrote	+Int	-the cardinality of $\langle x \rangle$ is $ x $.
Ex	Let R be <i>Counterclockwise rotation</i> by 90°	
Then $\langle R \rangle = \int R_1 R^2, R_1^3, Id \rangle$ is the same as Z_4		
Ex	Let R be <i>Counterclockwise rotation</i> by $\sqrt{2}$	
Then $\langle R \rangle = \int ... , \overline{R}^2, \overline{R}^1, Id, R_1, R_2, R_3^3, ...$		
because	-there are no K, l. such that $k \sqrt{z} = 1.360$, and $\langle R \rangle$ is the same group as Z	

$$
\frac{1}{2}x \quad \text{Let } r=(1265)(3)(4) \quad \text{be a permutation in } S_{6}.
$$
\n
$$
\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 6 & 3 & 4 & 1 & 5 \end{bmatrix}
$$
\n
$$
\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 3 & 4 & 1 & 5 \end{bmatrix}
$$
\n
$$
\frac{1}{100-1000 \text{ no fraction}} \quad \text{Read from right to left}
$$
\n
$$
\sigma^2 = (1265)(1265) = (16)(25)
$$
\n
$$
\sigma^3 = \sigma^2 \sigma = (16)(25)(1265) = (1562)
$$
\n
$$
\sigma^4 = 1d
$$
\n
$$
\sigma = 5
$$
\n
$$
\sigma^1 = \begin{bmatrix} 1 & 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2
$$

Then
$$
\langle \tau \rangle = \{ (1265), (16)(25), (1562), 12 \}
$$

\n
$$
= \{\tau, \tau^2, \tau^3, 5\}, \text{ the same group as } \mathbb{Z}_4
$$
\n
$$
\underline{Ex} \text{ Let } \tau = (126)(45) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 3 & 5 & 4 & 1 & 7 \end{bmatrix} \text{ in } S_7 \text{ Exercise:\n
$$
\tau^2 = (126)(45)(126)(45) = (162) \text{ Note: } (126)^{-1} = (162) \text{ find } \langle \tau \rangle
$$
\n
$$
\tau^3 = \frac{(162)(126)(45)}{\tau^2} = (126) \text{ Note: } (126)^{-1} = (162) \text{ find } \langle \tau \rangle
$$
\n
$$
\tau^4 = \frac{(45)(126)(45)}{\tau^3} = (162)(45)
$$
\n
$$
\tau^5 = (126)(126)(45) = (162)(45) \text{ and } \tau^6 = (162)(45)(126)(45) = 14 \text{ Then } \langle \tau \rangle = \{\tau, \tau^2, \tau^3, \tau^4, \tau^5, 14\}, \text{ the same group as } \mathbb{Z}_6
$$
$$

Thm (Division algorithm) Let a, $b \in \mathbb{Z}$ w $b > 0$. Then there exist unique integers q and r such that $a = b q + r$ where $0 \le r < b$

Proof that every subgroup of ^a cyclic group is cyclic

Let
$$
G = \langle x \rangle
$$
 be a cyclic group w generator x .
Suppose H is a subgroup of G .

Case 1: H is the trivial subgroup
$$
\{e\}
$$
.
Then $H = \langle e \rangle$ is cyclic

Case 2:1 H is non trivial.
\n• So H contains some *et* g not the identity.
\n• Then
$$
g = x^n
$$
 for some $n \in \mathbb{Z} \neq o$
\n• Since a subgroup is closed under taking
\ninverse, $g^{-1} = x^{-n}$ must also be in H.
\n• Since either n or $-n$ is positive,
\n H must contain some positive power of x.
\n• Let m be the smallest positive integer
\nSuch that $x^m \in H$. (Such an m exists
\nby the Principle f well-ordering.)

Claim Proof of claim Since It we know Xm H of the subgroup generated by the smallest subgroup of ^H ontaining ^m It Xm Next we will prove Let he ^H Since ^H ^G ^x we have ^h xk for some ^K ^E ^Z By the division algorithm there are q ^r EZ with ^o ^r am such that ^k mqtr Thus h ^x Matt by Thm ² Multiply ^k 2x on the left by ² ⁵⁹ ^K Xr Thm ³ So ^K ⁹ ^K is in H since he by assumption and H by We said earlier that ^m is the smallest positive integer such that EH Since ⁰ Er Cm we must have ^r ^o

Thus
$$
k = mg
$$
, and $h = x^k = x^m b = (x^m)^k \in \langle x^m \rangle$.
\nThis proves $H \leq \langle x^m \rangle$.
\n \longrightarrow The end of proof

$$
\frac{\text{Thm}}{\text{Int}} \text{Let } G \text{ be a group } \text{Cnot necessarily cyclic)},
$$
\n
$$
\text{Let } x \in G \text{ be of order } n.
$$
\n
$$
\text{If } k \in \mathbb{N}, \langle x^k \rangle = \langle x^{\text{gcd}(n,k)} \rangle
$$
\n
$$
\text{and } |x^k| = \frac{n}{\text{gcd}(n,k)}
$$
\n
$$
\text{In particular,}
$$

- $x>z \langle x^3 \rangle$ iff gcd(n,j)=1
- \cdot In $\mathbb{Z}_n, \langle 1 \rangle = \langle j \rangle$ iff gcd (n, j) = 1

For the order of an elt of a finite cyclic group

\ndivides the order of the group.

\nIf let n be the order of x.

\nAns ett of
$$
\langle x \rangle
$$
 is of the form x^k ,

\nSo its order is $\frac{n}{gcd(n,k)}$

$$
\begin{array}{lll}\n\hline\n\text{Ex} & \mathbb{Z}_{30} = \{0, 1, -1, 29\} = \langle 1 \rangle = \langle 7 \rangle = \langle 7 \rangle = \langle 1 \rangle = \dots = \langle 27 \rangle \\
\text{Order of} & \mathbb{Z}_{30} & \text{is } 30, \\
\hline\n\text{Elt } \text{20} & \text{is } 30, \\
\hline\n\text{Elt } \text{20} & \text{order} & \frac{30}{9} \text{c} \cdot \text{c} \cdot 30, \\
\hline\n\text{Elt } \text{4} & \text{bas} & \text{order} & \frac{30}{9} \text{c} \cdot \text{c} \cdot 30, \\
\hline\n\end{array}
$$

- Thm For each positive divisor k of n, the set $\langle \frac{n}{k} \rangle$ is the unique subgroup of \mathbb{Z}_n of order k . These are the only subgroups of \mathbb{Z}_n .
- Ex Subgroup lattice for Z_{30} :

