Document last updated Mon Sep ³⁰ 2024 Abstract Algebra Notes Week ¹ Wed Sep ⁴ ²⁰²⁴ Outline Names icebreaker First examples of groups and Cayley graphs Groups Def and examples Judson Sec ³ ¹ Group quiz ¹ Syllabus HW ^o Overleaf com Break around ⁸ pm

Shorthand:

$$
elt \rightarrow element
$$

 $iff \rightarrow if and only if$

$$
N = \{ n : n \text{ is a natural numbers } \} = \{ 1, 2, 3, \dots \}
$$
\n
$$
\mathbb{Z} = \{ n : n \text{ is an integer } \} = \{ \dots, -2, -1, 0, 1, 2, \dots \}
$$
\n
$$
\mathbb{Q} = \{ r : r \text{ is a rational number } \}
$$
\n
$$
= \{ \frac{P}{q} : P, q \in \mathbb{Z} \text{ where } q \neq 0 \}
$$
\n
$$
R = \{ x : x \text{ is a real number } \}
$$
\n
$$
\mathbb{C} = \{ z : z \text{ is a complex number } \}
$$
\n
$$
= \{ a + bi : a, b \in \mathbb{R} \}
$$

 $head$ becomes foot end $\begin{array}{ccc} 1 & 1 & 1 \end{array}$

Remark

- . Here all arrows are double-sided because doing R (or H or V) tuice is the same as doing nothing (I).
- . Instead of doing a vertical flip (harder in practice), you can do It and then R (or R then H) and achieve the same result.

2-light switch group
\nStarting state: both light switches are off
\ntour possible transformations:
\nI. Do nothing
\nR. Flip right switch
\nL. Flip left switch
\nB. Flip both switches
\nCayley diagram
\n
$$
\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}
$$
\n
\nCayley diagram
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$ \n
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$ \n
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$ \n
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$ \n
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$ \n
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$ \n
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$ \n
\n $\begin{array}{ccc}\n & R \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow\n\end{array}$

Remark

- The mattress group G_1 and 2-light switch group G_2 are superficially different, but they have the same structure $(we$ say "G, and G_2 are isomorphic as groups")
- . Any group w the same structure as G_1 and G_2 is called the <u>Klein 4 group</u>, denoted by V4 because the word for four in German starts w "V".

. Since $B = RL$, we can get to all states using just R and L, so another possible Coyley diagram for G2 is $00 \leftrightarrow 00$ \downarrow σ Exercise Consider ^a variation of the mattress group where the mattress is square. Now you can also rotate by 90° and 270°, and do more types of flips

a) List all possible transformations. ^b Try to draw ^a Cayley diagram using just flips

Groups See 3.2 Def Examples

Recall (Sec & C.1.2)
\nThe Cortesian product of sets A and B is a new set
\n
$$
A \times B = \{ (a,b) : a \in A \text{ and } b \in B \}
$$

\n $\frac{f_{lcm}}{1} \quad \text{In general } A \times B \neq B \times A$
\nEx: $A = \{ x,y \}$, $B = \{ |_{12,3} \}$, $C = \emptyset$
\n $A \times B = \{ (x,y) \}$, $(x,2), (x,3), (y,0), (y,2), (y,3) \}$

$$
AxC = \emptyset = C \times A
$$

Def Let S be a set.

\nA binary operation
$$
\ast
$$
 on S is a function

\n
$$
S \times S \longrightarrow S
$$

\n
$$
(a, b) \longmapsto a \times b
$$

Depending on the operation, we may write $*$ as f_1, f_2, f_3 or a different symbol, or no symbol at all. $E_{X}: (1)$ +,-, are binary operations on Z (2) \div is a binary operation on $\mathbb{Q}\setminus\{0\}$ and $\mathbb{R}\setminus\{0\}$ ¹³ ^t is ^a binary operation on IN (4) - is not a binary operation on N 5 Matrix addition and matrix multiplication are binary operations on $\mathsf{Mat}_n(\mathbb{R})^{\mathsf{def}}$ (nxn matrices ψ real entries) $16)$ a $4e^{4e^{2}}$ a is a binary operation on R $\left(\frac{1}{7}\right)$ a k b $\stackrel{def}{=}$ a + b + ab -1 $-$ on R

- Rem A binary operation is simply a method (or formula) for combining an ordered pair from ^S to yield ^a new elf of ^S This property is called closure Below is an example for how to use this word in a sentence:
- $Clain$ \div is not a binary operation on $\mathbb Z$,
- Prof The set Z is not closed under the operation :
For example, $S \div 4 \not\in Z$.

Def Let the a binary operation on S

\n①
$$
4
$$
 is called $associative$ if

\n
$$
(a \cdot b) \cdot c \cdot c \cdot c \cdot c
$$
\nForm word for identity: Enheit

\n② An element $e \cdot c$ is called an identify element for k if

\n
$$
e \cdot a = a
$$
\nFor all $a \cdot c$ is called an identify element for k if

\n
$$
e \cdot a = a
$$
\nFor all $a \cdot c$ is called an identify element for k and $a \cdot c = a$.

\nFor all $a \cdot c$ is called a inverse of a under k

\nThen b is called a commutative if

\n
$$
a \cdot b = b \cdot a
$$
\nFor all $a \cdot b \cdot c$.

\nFor all $a \cdot b \cdot c$.

 Ex (i) + on \mathbb{Z} associative, commutative has identity elt ⁰ Every $n \in \mathbb{Z}$ has inverse -n (2) on \mathbb{Z} associative, commutative has identity elt ¹ The elt 1 has inverse 1 The $e1t - 1$ has inverse -1 No other $n \in \mathbb{Z}$ has an inverse $(3) -$ on 7 not associative, $ex: (5-1) - 1 = 3$ but $5 - (1-1) = 5$ (4) on $\mathbb{Q}\setminus\{0\}$ associative, commutative has identity elt ¹ Every $r \in \mathbb{Q} \setminus \{0\}$ has an inverse $\frac{r}{r}$ (5) \div on $\&$ not associative, $ex: (20 \div 5) \div 2 = 3$ but $30 \div (5 \div 2) = 12$ (6) . Matrix multp on Mat_n (\mathbb{R}) associative, not commutative when $n \geqslant 2$ identity is $\binom{1_1}{1_1_1}$, the identity matrix $M \in Mat_n(\mathbb{R})$ has an inverse iff det $(M) \neq O$

Use might refer to a group as G when the operation # is implicit

\nDef A group (G,*) is a set G by a binary

\noperation
$$
*
$$
 on G such that

\n① 4 is associative

\n14 the fact of the matrix $*$ is an identity $eH e^{-t}$ for $*$.

\n18 each set of G has an inverse under $*$.

\n19 14 there is an identity $eH e^{-t}$ for $*$.

\n10 14 there is an identity $eH e^{-t}$ for $*$ in S.

\n10 14 there is an identity $eH e^{-t}$ for $*$ in S.

\n11 14 has an inverse under $*$, then this inverse is unique.

\n18.14 has an inverse under $*$, then this inverse is unique.

\n18.15 has an inverse under $*$, then this inverse is unique.

\n19.16 The binary operation is +, we might write the inverse of a as -a, not d?

\n10.17 The first series is an inverse of a under $*$.

\n11.17 The answer is 4, so it is a non-zero of a under $*$.

\n12.18 The first series is an inverse of a under $*$.

\n13.19

\n14.10.11

\n15.110

\n16.111

\n17.12

\n18.131

\n19.131

\n10.14

\n11.15

\n12.16

\n13.17

\n14.18

\n15.19

\n16.10

\n17.10

\n18.11

\n19.11

\n10.12

\n11.13

\n12.14

\n13.15

\n14.16

\n15.17

\n16.19

\n17.10

\

$$
\begin{array}{ll}\n\text{Prop} & \text{("Socks - shoes'' proper+y)} \\
\text{Let } & \text{(G, 4)} be a group, and a, b \in G \\
\text{Ob} & \text{(a b)}^1 = b^1 a^1 \\
\text{Ob} & \text{(a)}^1 = a\n\end{array}
$$

Proof (1)
$$
ab(b^{-1}a^{-1}) = ae^{-a^{-1} = ae^{-a^{-1}} = e
$$
 and
\nsimilarity, $(b^{-1}a^{-1})$ ab = $b^{-1}eb = b^{-1}bee$,
\nSo $b^{-1}a^{-1}$ is an inverse of ab.
\nBut the previous proposition tells us that inverses are unique.
\nHence $(ab)^{-1} = b^{-1}a^{-1}$.
\n(2) Prove / read text (Prop 3.20)

$$
\begin{array}{lll}\n\text{Def} & A \text{ group } (G, \#) \text{ is called abelian for commutative)} \\
\text{If } \# \text{ is commutative.}\n\end{array}
$$

$$
Ex \text{ of abelian groups}
$$

- $\left(1\right)$ $\mathbb{Z},$ $\mathbb{Q},$ $\mathbb{R},$ \mathbb{C} are abelian groups under $+$ (2) $\{$ Even integers $\}$ is an abelian group under $+$
- (3) $\mathbb{Q}^x = \mathbb{Q} \setminus \{0\}$, $\mathbb{R}^x = \mathbb{R} \setminus \{0\}$ $\mathbb{C}^x = \mathbb{C} \setminus \{0\}$ are abelian groups under.

4) Matz LR) is an abelian group under matrix addition identity is loo

$G_{L_n}(R) \stackrel{def}{=} \{M \in Mat_n(R): A \text{ is invertible }\}$
is called the general linear group of degree n over R
$F_{dCE} \{G_{L_n}(R), \text{ matrix multiple }\}$
$F_{dCE} \{G_{L_n}(R), \text{ matrix multiple }\}$
$F_{rof} + f_{rof} + G_{L_2}(R)$
$F_{rof} \{H, B \in GL_2(R)$
$F_{rof} \{H, B \in GL_2(R)$ </td